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Abstract
Jellyfish are of particular concern for marine finfish aquaculture. In recent years repeated

mass mortality episodes of farmed fish were caused by blooms of gelatinous cnidarian

stingers, as a consequence of a wide range of hemolytic, cytotoxic, and neurotoxic proper-

ties of associated cnidocytes venoms. The mauve stinger jellyfish Pelagia noctiluca (Scy-
phozoa) has been identified as direct causative agent for several documented fish mortality

events both in Northern Europe and the Mediterranean Sea aquaculture farms. We investi-

gated the effects of P. noctiluca envenomations on the gilthead sea bream Sparus aurata
by in vivo laboratory assays. Fish were incubated for 8 hours with jellyfish at 3 different den-

sities in 300 l experimental tanks. Gill disorders were assessed by histological analyses and

histopathological scoring of samples collected at time intervals from 3 hours to 4 weeks

after initial exposure. Fish gills showed different extent and severity of gill lesions according

to jellyfish density and incubation time, and long after the removal of jellyfish from tanks. Jel-

lyfish envenomation elicits local and systemic inflammation reactions, histopathology and

gill cell toxicity, with severe impacts on fish health. Altogether, these results shows P. nocti-
luca swarms may represent a high risk for Mediterranean finfish aquaculture farms, generat-

ing significant gill damage after only a few hours of contact with farmed S. aurata. Due to the

growth of the aquaculture sector and the increased frequency of jellyfish blooms in the

coastal waters, negative interactions between stinging jellyfish and farmed fish are likely to

increase with the potential for significant economic losses.
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Introduction
In recent years, negative interactions between jellyfish blooms (JB) and marine finfish aquacul-
ture have been reported. Such interactions have included mass fish mortalities with severe eco-
nomic impacts on the aquaculture companies [1,2]. Jellyfish can enter fish cages either intact
or broken up into tentacles and other body fragments pushed by currents and waves washing
in through the net cages [3,4]. Several species of cnidarian jellyfish have been reported to affect
marine farmed fish of inducing skin lesions and gill damage caused by nematocyst discharge
and venom injection usually leading to local inflammatory response, cell toxicity and histopa-
thology [2,3,5]. Prolonged nematocyst discharges in fish tissues may often lead to secondary
bacterial infections and associated systemic reactions, including respiratory and osmoregula-
tory distress, altered behaviour, and death [2,6–8]. In particular, gills have vital roles, being the
main site of gas exchange, osmoregulation, acid-base balance, and excretion of nitrogen com-
pounds [9]. Gill disorders have become one of the most serious causes of mortality in marine
farmed salmon in Ireland, with average losses of 12% per year [6].

The scyphomedusa Pelagia noctiluca (Forsskål, 1775), also known as mauve stinger, is one
of the most common stinging jellyfish species across the Eastern Atlantic and the Mediterra-
nean Sea, producing major outbreaks with subsequently highly negative impacts on human
activities, including caged finfish aquaculture [10,11]. On the Mediterranean Spanish coast, P.
noctiluca is responsible for gill damage on the marine farmed fish Dicentrarchus labrax, leading
to reduction of fish growth rate and even death [12]. Additional fish mortality events related to
P. noctiluca abundance have also been recorded in Tunisian facilities (unpublished data). In
2007, a widespread occurrence of mauve stingers were documented in Irish coastal and shelf
waters and caused several hundred thousand salmon mortalities [13,14]. Since then there have
been several other large fish kills in UK and Irish waters [15,16]. In the same region, a bloom of
moon jellyfish Aurelia aurita was responsible for a significant salmon mortality in summer
2010 [14,17]. Other jellyfish have also been identified as potentially harmful species for aqua-
culture facilities, such as the hydromedusae Solmaris corona and Phialella quadrata [3], and
the siphonophoreMuggiaea atlantica that caused the death of> 100,000 farmed fish in Nor-
way [18]. Previous studies demonstrated also that some jellyfish species—such as P. quadrata
and P. noctiluca—can act as vectors of Tenacibaculum maritimum, the causative agent of tena-
cibaculosis, a major bacterial disease affecting fish mariculture worldwide, which heavily exac-
erbates the impacts of jellyfish sting envenomations [19–22].

Impacts of low to medium jellyfish abundances usually remain unnoticed by aquaculture
farmers and low incidence of unspecific pathologies are labelled as unknown "water borne irri-
tant damage" [15]. However, substantial gill disorders to produce low-level mortalities might
be potentially correlated also to low jellyfish abundances (Baxter el al. 2011).

Much work has been carried out on the impacts of jellies on farmed salmon aquaculture in
Northern European waters [3,6,23,24]. Comparatively, little or no information is available
about the impacts of one of the most harmful European jellyfish species, P. noctiluca, on the
commonest Mediterranean finfish aquaculture species, such as the sea bass D.labrax and the
gilthead sea bream Sparus aurata (Linnaeus, 1758). Due to its high adaptability to intensive
rearing conditions, S. aurata represents one of the most suitable species for cultivation in
ponds and marine cages, leading to the most important fish production in the Mediterranean
Sea, reaching near 160.000 tonnes in 2012 [25]. In parallel, overproduction led to cutbacks in
market price, calling for further reduction of production costs.

To increase knowledge on impacts of gelatinous plankton blooms on Mediterranean caged
fish species and support early monitoring of risks for aquaculture production, an experimental
assay was set up to assess [I] the potential histopathological damage that P. noctiluca jellyfish

Jellyfish Impact on Farmed Fish

PLOS ONE | DOI:10.1371/journal.pone.0154239 April 21, 2016 2 / 11

research and innovation programme has also partially
supported this research. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



tissue fragments produce on gills of cultured S. aurata, [II] the impacts of different jellyfish
densities on cultured fish health, and [III] the histological evolution of gill lesions over time fol-
lowing initial jellyfish sting treatment.

Material and Methods
This study was performed in accordance with the European Commission Directive 2010/63/
EU. The experimental protocol was designed to comply with the European policy of the “3 Rs”
(Reduce, Refine, and Replace) in aquatic animal experimentation and was approved by the
Institut Supérieur de Pêche et d'Aquaculture de Bizerte (Research unit 05/ur/11-15), which is
under the double supervision of the Tunisia’s Ministry for Agriculture and the Hydraulic
resources, and of the Ministry for Higher education and the Scientific Research and
Technology.

Fish were monitored daily (early in the morning and during afternoon) over the complete
experiment duration. Check-list including different humane endpoints was revised at group
and also at individual level when necessary. The main established criteria were swimming
behavior, skin pigmentation, frequency of opercular movements, ability of food uptake, weight
loss, prostration, hyper-excitability and itching. The maintenance of animals during the experi-
ment as well as the euthanasia procedure was monitored and carried out by trained and com-
petent staff, in order to minimise animals’ suffering.

Animals’maintenance and experimental setup
A total number of 136 Sparus aurata adult fish (mean weight of 200 ± 19.23 g) were obtained
from “Tunisian Teboulba Fish” aquaculture facility and transported to the Institut Supérieur
de Péche et d'Aquaculture de Bizerte, Tunisia (ISPA). Fish were homogeneously distributed in
8 circular tanks of 300 litres each (fish stocking density of around 9 kg m-3) and allowed to
acclimate for one week before starting the experiment. All tanks were supplied by a continuous
flow (renewal rate of 23 l h-1) of double-filtered (5-μm, 1-μmmesh) seawater (FSW). The water
circulation flow was kept at natural sea temperature of 15.5 ± 1.0°C and 36.8 ± 0.3 salinity)
with aeration to keep dissolved oxygen at 100% saturation. Throughout the experiment, the
fish were fed daily with standard commercial pellets (Skretting S.A.) and maintained under a
natural photoperiod (12 h light, 12 h dark).

Jellyfish (4.5 ± 0.9 cm bell diameter) were collected by a dip net the day before the start of
the experiment from the Channel of Bizerte (Tunisia) and maintained in 25 litres buckets with
FSW and at low density for one day. Pelagia noctiluca jellyfish is not an endangered or pro-
tected species. Specimens from Bizerte gulf were collected without the need of a permit because
sampling was never conducted in a restricted marine area.

To simulate a realistic encounter between jellyfish that had been pressed by currents against
aquaculture cages and cultured fish, jellyfish were chopped into small (� 1 cm) pieces immedi-
ately prior to the start of the jellyfish exposure. The four treatment groups consisted of two
control tanks (without jellyfish) and six tanks with chopped P. noctiluca at low (LJ), medium
(MJ), and high jellyfish densities (HJ): 3, 7 and 15 jellyfish per tank with 18 experimental fish
(10, 25 and 50 jellyfish m-3, approximately equivalent to 350 g, 875 g and 1750 g jellyfish bio-
mass, respectively). These densities were predetermined to reproduce a range of different jelly-
fish concentrations observed during P. noctiluca bloom periods in Tunisian waters and Sicily
Channel (unpublished observations). A 1-mm stainless steel mesh was placed at the outlet of
each tank preventing jellyfish pieces to spill out the experimental tanks.

The experiment began when jellyfish pieces were placed simultaneously in all treatment
tanks with fish. The maximum fish-jellyfish interaction lasted 8 h; after that, all jellyfish pieces
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were removed using a 200-μmmesh hand net. The exposure time to jellyfish tissue of 8 h was
used to represent the minimum night time with P. noctiluca jellyfish in surface waters, follow-
ing sunset and the diel vertical migration of their crustacean prey [26–28].

Fish health was monitored nine times during the experiment: shortly before jellyfish incor-
poration to the fish tanks (0 h), during fish-jellyfish contact (3h), one hour after the removal of
the jellyfish (9h), and six later times, 24 and 48h; 1, 2, 3 and 4wk, respectively before the end of
the experiment at 4 weeks. At the highest jellyfish density sampling was not carried out at 24 h,
3 and 4 weeks because of the shortage of experimental individuals and fish mortalities. At each
sampling time, 4 fish were randomly sampled from each treatment group (two per tank),
anesthetised and then killed according to the current animal care rules using a lethal dose of
UNICAINE 2% (lidocaine-HCl 500 ppm) [29]. Immediately after death, which occurred within
2–3 minutes of anaesthetic application, fish were weighed and measured, and their skin and
gills visually examined for gross pathology, such as scale loss, excess mucus, pale gill filaments,
swelling, necrosis and the presence of macro-parasites [30]. Two gill arches were excised from
each fish and immediately preserved in 10% neutral buffered formalin for histological analysis.
Tissues then were embedded in paraffin, cut by microtome into 2–5 μm sections and stained
following a standard haematoxylin-eosin protocol. For each gill arch, several sections were
examined microscopically at 100X and 400X magnifications.

Gill score protocol
Interpretation of the gill damage was based on a recently developed gill histopathology scoring
system [4,12], rating the potential damage on each gill sample by a total score ranging from 0
to 24, obtained by summation of partial scores assigned to different primary and secondary cri-
teria. Primary parameters were related to 3 specific pathologies: epithelial hyperplasia
(increased cell production), lamellar fusion, and cellular anomalies (degeneration, necrosis and
sloughing). According to the presence, extent and severity of those pathologies, primary scores
ranged from 0 to 3. In addition, a 0 or 1 score was attributed to the absence or presence of each
of the following secondary parameters: hypertrophy, oedema, eosinophilic granular cells,
inflammation, circulatory damage, congestion, bacterial pathogens and parasitic pathogens.
The total score assigned for primary and secondary parameters, allowed classification of fish
gill damage according to four cumulative score ranges: 0–3 = no significant pathology,
4–6 = mild gill pathology of minor clinical significance, 7–9 = moderate gill pathology of clini-
cal significance,� 10 = severe gill pathology of high clinical significance.

Statistical analysis
A Shapiro-Wilk test indicated that the assumptions of normality were violated (p< 0.05, SPSS
v. 20.0); therefore, differences among treatments and among sampling weeks were tested using
the non-parametric one-way Kruskal-Wallis test (SPSS v.20.0). Significant results were further
tested by pairwise post-hoc comparisons (Mann-Whitney U test, SPSS v. 20.0), adjusted for
type I error, and Similarity percentages analysis, SIMPER (PRIMER 6).

Results
Gills from the control fish group without jellyfish retained a normal morphology throughout
the experiment. Each gill arch supported many distinct and regular filaments arranged perpen-
dicularly in two rows and without significant lesions. In contrast, gross pathology in fish
exposed to jellyfish pieces was observed throughout the experiment (Fig 1), with the extent and
intensity of gill damage increasing with time and jellyfish density (Fig 2).
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At 3 h after initial contact with jellyfish pieces, fish gills already showed abrasion of lamellar
filaments (Fig 1A). After 24 h from the exposure to jellyfish, depigmentation, increasing thick-
ness of lamellar filaments and haemorrhage in gill tissue were also recorded. Mild epitheliocys-
tis [31,32] was observed in control and treated fish through the identification of spherical cysts
that were circumscribed by an eosinophilic hyaline capsule. One day before the start of the
experiment (24 h after the exposure to jellyfish), snout irritation, scale loss on the flanks and
damage in the caudal and dorsal fins and operculum were also observed in fish in the medium
and high jellyfish density groups (Fig 1B). Respiratory distress, jumping and swimming near

Fig 1. External lesions on Sparus aurata due to Pelagia noctiluca jellyfish exposure. A. Fish gill from control group; B. abrasion, haemorrhage,
depigmentation and increased thickness of lamellar filaments of a fish from the high jellyfish density group 24 h after exposure to jellyfish; C. wound with
necrotic tissue on the flank of Sparus aurata fish from the medium density group 2 weeks after exposure to jellyfish.

doi:10.1371/journal.pone.0154239.g001

Fig 2. Average gill scores of treatment groups.Gill scores of control, low, medium and high Pelagia
noctiluca jellyfish density groups before (0 h) and at different times after Sparus aurata exposure to jellyfish.
Fish were not sampled from the highest jellyfish density group at 24 h, 3 and 4 weeks sampling points
(vertical bars denote standard error).

doi:10.1371/journal.pone.0154239.g002
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the water surface were also observed for some treated fish throughout the exposure period to
jellyfish at different jellyfish densities. A slight trend of weight reduction was observed in
treated fish, possibly due to the ceased feeding behaviour observed through the experiment, but
no significant statistical differences were found in weight or length analysis.

The histopathological analysis showed that the lowest gill damage score was in the control
group, characterised by low levels of lamellar hyperplasia and occasional fusion, a background
level of pathology typical of marine-farmed fish [6]. Gill scores from the control group were
significantly different (lower) than all the groups with jellyfish (U1 = 25.267, p = 0.001). Gill
scores also differed significantly among the groups treated with jellyfish (U2 = 7.050,
p = 0.029). The gill scores in the LJ density group showed no significant differences throughout
the experiment (U8 = 12.604, p = 0.126), with average scores of 2.25 ± 0.9 (SE). For the MJ den-
sity group, significant gill lesions were observed 1 week after the start of the experiment (U1 =
4.86, p = 0.027), with scores peaking after 2 weeks (gill score 6 ± 1.5 SE). Significant gill damage
was observed immediately in the HJ density group, only 3h after the exposure to jellyfish began
(U1 = 4.513, p = 0.034). Those high scores continued over time with a peak after 48h (6 ± 1.3
SE) (Fig 2)

Over the duration of experiment, 6 out of 136 experimental individuals died. Fish mortali-
ties happened in the HJ density group during the second and third week of experiment, after
the peak in gill damage scores. Gross pathology showed some slight external lesions mainly in
fish flank. Fish showed excessive mucus production and pale gills, hyperplasia, severe lamellar
fusion, desquamation, necrotic patches, lamellar congestion and lamellar oedema in some
areas of the gills. Gill epithelium lesions are known to be responsible of respiratory problems
and osmoregulation disorders, such as hydro-mineral equilibrium disturbances and alterations
in the excretion of nitrogenous waste (NH4

+). All these troubles leaded death of fish. In the MJ
density group, gill scores decreased during the third and fourth week of sampling, mainly
because of reduction in the percentages of hyperplasia and cellular anomalies. By contrast, fish
from the LJ density group presented mild damage during the experiment, principally repre-
sented by hyperplasia and lamellar fusion (Figs 3 and 4).

The gill scores for the experimental treatment groups ranged from 1 to 9 over the entire
experiment, with most fish displaying moderate lesions considered to be of clinical significance.
The SIMPER analysis showed that lamellar fusion and hyperplasia were the most common
lesions in all treated groups. Also, a severe inflammatory response was noted beginning at 9h
after the exposure to jellyfish. The severity of gill damages was directly proportional to jellyfish
density, with increasing cellular anomalies over time.

Discussion
Frequency of occurrence and abundance of P. noctiluca vary across the Mediterranean, but
dense populations can be recorded most of the year at several coastal localities, such as the
channel of Bizerte (Tunisia) and the Strait of Messina (Italy) [10,33,34]. Our laboratory experi-
ments simulated the potential consequences of blooms of the scyphomedusa P. noctiluca on
finfish aquaculture farms. Our results showed that jellyfish stings can severely affect caged S.
aurata fish by causing significant gill damage shortly after contact with jellyfish tissues and
subsequent deterioration on fish health.

Comparable gill damage was observed previously in farmed salmon (Salmo salar) during
blooms of P. noctiluca and Aurelia aurita scyphomedusae in northern Europe [6,14]. This first
experimental challenge trial between fish in culture and jellyfish exposed juvenile S. salar to
realistic A. aurita jellyfish bloom densities showed significant and increasing gill damage start-
ing 24 h after the initial contact [6].
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Fig 3. Gill lesions in fish exposed to Pelagia noctiluca. A. Healthy fish gill from the control (no jellyfish) group (0h) (100x); B-E. pathology in fish gills from
the treatment groups after 8-h exposure to jellyfish: B. black arrows indicate lamellar hyperplasia on fish gill from the low jellyfish density group at 9h (400x);
C. lamellar hyperplasia (1) and fusion (2) from the medium jellyfish density group after 1 week (100x); D. epitheliocystis (black arrow) and lamellar oedema
(1) from the medium jellyfish density group after 3 weeks (400x); E. hyperplasia of the epithelium of the primary lamellae (1), necrosis focal of secondary
lamellae (2) and circulatory disturbances (3) from the high jellyfish density group after 48h (100x).

doi:10.1371/journal.pone.0154239.g003

Fig 4. Histopatholical gill damage of experimental groups over time.MLH: Mild lamellar hyperplasia; MLF: Mild lamellar fusion; MoLH: Moderate
lamellar hyperplasia; MoLF: Moderate lamellar fusion; MCA: Mild cellular anomalies; MoCA: Moderate cellular anomalies; SLH: Severe lamellar hyperplasia;
MCO: Mild cellular oedema; FM: Fish mortality; (NA): data not available; (—): Non significant gill damage. Colours indicate the severity of gill damage: cream
colour = mild injuries; orange = medium level of injuries; violet and purple = medium-high and high level of gill damage respectively.

doi:10.1371/journal.pone.0154239.g004
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Here we investigated the intensity of gill damage on cultured sea bream at increasing P. noc-
tiluca densities. At low jellyfish density (up to 10 jellyfish m-3), mild damage to fish gills were
observed. Conversely, at higher jellyfish concentrations (� 25 jellyfish m-3) impacts ranged
from moderate damage, leading to potential effects on the fish metabolism, to more severe con-
sequences including death, due to high levels of lesions and respiratory distress [2].

Three weeks after the initial exposure to jellyfish, fish from the medium density group
showed early signs of tissue repair in the gills. Recovery was characterized by significant
decreases in the percentages of lamellar hyperplasia and fusion, in observed inflammatory reac-
tions, and disappearance of cellular anomalies. At last, recovery of tissue integrity was observed
in fish in the MJ density group, whereas fish from HJ density died 2–3 weeks after exposure to
jellyfish. Exposure to HJ density led to intense and increasing gill damage, eventually impairing
homeostatic mechanisms and adaptive physiological responses [35]. Non bacterial infection of
Tenacibaculum sp. was confirmed, due to the absence of filamentous bacterial mats on the
necrotic patches [36]. Overall, these results indicate that even short exposure to jellyfish can
result in significant gill damage in marine-farmed fish, with potential increase in extent and
severity of damage even when jellyfish are no longer present.

Our results also indicate that the potential impact of jellyfish on marine wild fish popula-
tions might not be negligible. Previous research on fish-jellyfish interactions are mostly focused
on jellyfish predation on fish or, conversely, the use of jellyfish biomasses by medusivorous fish
as temporary or exclusive food source [34,37–39]. The outcome of jellyfish interactions with
fish populations depends on several factors affecting the probability of encounters, including
water temperature, dissolved oxygen, and the size and density of predators and prey [40]. For
several jellyfish species, bloom density may reach extremely high values. Pelagia noctiluca in
the Mediterranean Sea occurs in large swarms reaching densities over 100 medusae m-3 for
prolonged periods (up to weeks), with temporary aggregations caused by wind, currents,
coastal geomorphology and jellyfish behaviour containing up to 600 medusae m-3 [41,42].
These values largely exceed the experimental density values used in our fish-jellyfish interac-
tion experiments (10, 25, 50 medusae m-3). Furthermore, shortly after sexual reproduction—in
springtime—large swarms of ephyrae and juvenile jellyfish are regularly encountered in the
Southern Tyrrhenian Sea (Aeolian islands), with much higher densities, up to several thou-
sands of individuals m-3; (Piraino, pers. observation; see also https://goo.gl/G8GNl8). Tempo-
rary paramount densities may therefore represent a key threat affecting the physiological
integrity and health of fish living in sheltered areas where extremely high jellyfish aggregations
occur, such as bays or fjords (with records up to 1000 Periphylla periphyllamedusae m-3

[43,44]).
Further investigations are required to clarify whether the potential rise of both temperature

and jellyfish numbers in a global change scenario may exacerbate negative impacts not only on
farmed fish, but also on wild fish populations [1,45,46].

The consequences of episodes of jellyfish proliferation can be of high importance for aqua-
culture, considering they could affect not only fish health, but also the growth and quality of
caged fish [2,30]. The sudden and unpredictable nature of jellyfish blooms hinders the imple-
mentation of preventive measures against their negative effects in aquaculture. Because of this,
the development and implementation of swift mitigation procedures are crucial and must be
rooted in knowledge of the type and extent of physical damage caused by jellyfish. Even a low
density of P. noctiluca jellyfish could be detrimental to the health of caged fish, causing minor
but significant gill lesions, which may progress over time and be worsened by bacterial infec-
tions. Investigation of the different effects of P. noctiluca blooms will enable estimation of the
response time required by aquaculture facilities to undertake appropriate countermeasures that
could differ in magnitude according to the damage level. Due to the recent and projected future
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growth of the aquaculture sector [47] and the increased frequency of jellyfish blooms in Medi-
terranean coastal waters [45,48], negative interactions between stinging jellyfish and caged fin-
fish may turn into a substantial problem with high economic losses [14].
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