3,961 research outputs found

    A simple model of electron beam initiated dielectric breakdown

    Get PDF
    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical

    Alien Registration- Beers, John R. (Southwest Harbor, Hancock County)

    Get PDF
    https://digitalmaine.com/alien_docs/19346/thumbnail.jp

    Telling the tale of the first stars

    Full text link
    HE 0107-5240 is a star in more than once sense of the word. Chemically, it is the most primitive object yet discovered, and it is at the centre of debate about the origins of the first elements in the Universe.Comment: 3 pages, 0 figures, published in Nature "News and Views," Apr. 24, 200

    Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    Get PDF
    The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in ss-elements (CEMP-ss stars), and some of these are also enriched in rr-elements (CEMP-s/rs/r stars). One formation scenario proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population. The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The results of our comparison between the modelled and observed abundance distributions are different for CEMP-s/rs/r stars and for CEMP-ss stars. For the latter, our simulations qualitatively reproduce the observed distributions of C, Na, Sr, Ba, Eu, and Pb. Contrarily, for CEMP-s/rs/r stars our model cannot reproduce the large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result is consistent with previous studies, and suggests that CEMP-s/rs/r stars experienced a different nucleosynthesis history to CEMP-ss stars.Comment: 17 pages, 11 figures, accepted for publication on Astronomy and Astrophysic

    Understanding Interest And Self-Efficacy In The Reading And Writing Of Students With Persisting Specific Learning Disabilities During Middle Childhood And Early Adolescence

    Get PDF
    Three methodological approaches were applied to understand the role of interest and self-efficacy in reading and/or writing in students without and with persisting specific learning disabilities (SLDs) in literacy. For each approach students in grades 4 to 9 completed a survey in which they rated 10 reading items and 10 writing items on a Scale 1 to 5; all items were the same but domain varied. The first approach applied Principal Component Analysis with Varimax Rotation to a sample that varied in specific kinds of literacy achievement. The second approach applied bidirectional multiple regressions in a sample of students with diagnosed SLDs-WL to (a) predict literacy achievement from ratings on interest and self-efficacy survey items; and (b) predict ratings on interest and self-efficacy survey items from literacy achievement. The third approach correlated ratings on the surveys with BOLD activation on an fMRI word reading/spelling task in a brain region associated with approach/avoidance and affect in a sample with diagnosed SLDs-WL. The first approach identified two components for the reading items (each correlated differently with reading skills) and two components for the writing items (each correlated differently with writing skills), but the components were not the same for both domains. Multiple regressions supported predicting interest and self-efficacy ratings from current reading achievement, rather than predicting reading achievement from interest and self-efficacy ratings, but also bidirectional relationships between interest or self-efficacy in writing and writing achievement. The third approach found negative correlations with amygdala connectivity for 2 reading items, but 5 positive and 2 negative correlations with amygdala connectivity for writing items; negative correlations may reflect avoidance and positive correlations approach. Collectively results show the relevance and domain-specificity of interest and self-efficacy in reading and writing for students with persisting SLDs in literacy

    The Asymmetric Thick Disk: A Star Count and Kinematic Analysis. II The Kinematics

    Full text link
    We report a kinematic signature associated with the observed asymmetry in the distribution of thick disk/inner halo stars interior to the Solar circle described in Paper I. In that paper we found a statistically significant excess (20% to 25 %) of stars in quadrant I (l ~ 20 deg to 55 deg) both above and below the plane (b ~ +/- 25 deg to +/- 45 deg) compared to the complementary region in quadrant IV. We have measured Doppler velocities for 741 stars, selected according to the same magnitude and color criteria, in the direction of the asymmetry and in the corresponding fields in quadrant IV. We have also determined spectral types and metallicities measured from the same spectra. We not only find an asymmetric distribution in the V_LSR velocities for the stars in the two regions, but the angular rate of rotation, w, for the stars in quadrant I reveals a slower effective rotation rate compared to the corresponding quadrant IV stars. We use our [Fe/H] measurements to separate the stars into the three primary population groups, halo, thick disk, and disk, and conclude that it is primarily the thick disk stars that show the slower rotation in quadrant I. A solution for the radial, tangential and vertical components of the V_LSR velocities, reveals a significant lag of ~ 80 to 90 km/s in the direction of Galactic rotation for the thick disk stars in quadrant I, while in quadrant IV, the same population has only a ~ 20 km/s lag. The results reported here support a rotational lag among the thick disk stars due to a gravitational interaction with the bar as the most likely explanation for the asymmetry in both the star counts and the kinematics. The affected thick disk stars, however, may be associated with the recently discovered Canis Major debris stream or a similar merger event (abridged).Comment: Accepted for publication in the Astronomical Journa

    Automated Determination of [Fe/H] and [C/Fe] from Low-Resolution Spectroscopy

    Full text link
    We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] < -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of ~ 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low-metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.Comment: 8 pages, 7 figures; accepted for publication in A
    corecore