590 research outputs found

    Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

    Get PDF
    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400 mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease

    Thin-sheet flow between coalescing bubbles

    Get PDF
    When two spherical bubbles touch, a hole is formed in the fluid sheet between them, and capillary pressure acting on its tightly curved edge drives an outward radial flow which widens the hole joining the bubbles. Recent images of the early stages of this process (Paulsen et al., Nat. Commun., vol. 5, 2014) show that the radius of the hole r ⁣Er_{\!E} at time tt grows proportional to t1/2t^{1/2}, and that the rate is dependent on the fluid viscosity. Here, we explain this behaviour in terms of similarity solutions to a third-order system of radial extensional-flow equations for the thickness and velocity of the sheet of fluid between the bubbles, and determine the growth rate as a function of the Ohnesorge number Oh\mathit{Oh}. The initially quadratic sheet profile allows the ratio of viscous and inertial effects to be independent of time. We show that the sheet is slender for r ⁣Ear_{\!E}\ll a if Oh1\mathit{Oh}\gg 1, where aa is the bubble radius, but only slender for r ⁣EOh2ar_{\!E}\ll \mathit{Oh}^{2}a if Oh1\mathit{Oh}\ll 1 due to a compressional boundary layer of length LOhr ⁣EL\propto \mathit{Oh}\,r_{\!E}, after which there is a change in the structure but not the speed of the retracting sheet. For Oh1\mathit{Oh}\ll 1, the detailed analysis justifies a simple momentum-balance argument, which gives the analytic prediction r ⁣E(32aγ/3ρ)1/4t1/2r_{\!E}\sim (32a{\it\gamma}/3{\it\rho})^{1/4}t^{1/2}, where γ{\it\gamma} is the surface tension and ρ{\it\rho} is the density.J.P.M. acknowledges an Engineering and Physical Sciences Research Council studentship. C.R.A. and O.A.B. acknowledge the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. All data accompanying this publication are directly available within the publication.This is the accepted manuscript of a paper published in the Journal of Fluid Mechanics (Munro JP, Anthony CR, Basaran OA, Lister JR, Journal of Fluid Mechanics, 2015, 773, doi:10.1017/jfm.2015.253). The final version is available at http://dx.doi.org/10.1017/jfm.2015.25

    Very high two-dimensional hole gas mobilities in strained silicon germanium

    Get PDF
    We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure

    Plethora of transitions during breakup of liquid filaments.

    Get PDF
    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial-viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial-viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities.The authors thank Dr. Pankaj Doshi for several insightful discussions. This work was supported by the Basic Energy Sciences program of the US Department of Energy (DE-FG02-96ER14641), Procter & Gamble USA, the Chevron Corporation, the UK Engineering and Physical Sciences Research Council (Grant EP/H018913/1), the John Fell Oxford University Press Research Fund, and the Royal Society.This is the final published version. It first appeared via PNAS at http://dx.doi.org/10.1073/pnas.141854111

    Self-similar rupture of thin films of power-law fluids on a substrate

    Get PDF
    Thinning and rupture of a thin film of a power-law fluid on a solid substrate under the balance between destabilizing van der Waals pressure and stabilizing capillary pressure is analysed. In a power-law fluid, viscosity is not constant but is proportional to the deformation rate raised to the n−1 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3en−1n−1 power, where 00n=1n=1 for a Newtonian fluid). In the first part of the paper, use is made of the slenderness of the film and the lubrication approximation is applied to the equations of motion to derive a spatially one-dimensional nonlinear evolution equation for film thickness. The variation with time remaining until rupture of the film thickness, the lateral length scale, fluid velocity and viscosity is determined analytically and confirmed by numerical simulations for both line rupture and point rupture. The self-similarity of the numerically computed film profiles in the vicinity of the location where the film thickness is a minimum is demonstrated by rescaling of the transient profiles with the scales deduced from theory. It is then shown that, in contrast to films of Newtonian fluids undergoing rupture for which inertia is always negligible, inertia can become important during thinning of films of power-law fluids in certain situations. The critical conditions for which inertia becomes important and the lubrication approximation is no longer valid are determined analytically. In the second part of the paper, thinning and rupture of thin films of power-law fluids in situations when inertia is important are simulated by solving numerically the spatially two-dimensional, transient Cauchy momentum and continuity equations. It is shown that as such films continue to thin, a change of scaling occurs from a regime in which van der Waals, capillary and viscous forces are important to one where the dominant balance of forces is between van der Waals, capillary and inertial forces while viscous force is negligible

    Persistence of memory in drop breakup: the breakdown of universality

    Get PDF
    A low-viscosity drop breaking apart inside a viscous fluid is encountered when air bubbles, entrained in thick syrup or honey, rise and break apart. Experiments, simulations, and theory show that the breakup under conditions in which the interior viscosity can be neglected produces an exceptional form of singularity. In contrast to previous studies of drop breakup, universality is violated so that the final shape at breakup retains an imprint of the initial and boundary conditions. A finite interior viscosity, no matter how small, cuts off this form of singularity and produces an unexpectedly long and slender thread. If exterior viscosity is large enough, however, the cutoff does not occur because the minimum drop radius reaches subatomic dimensions first

    Myxomycetes of Belgrad Forest (Istanbul)

    Get PDF
    Myxomycetes were collected in the Belgrad Forest, which is located near Istanbul in the Thrace region of Turkey, between February 2002 and January 2003. Sixty-two species of myxomycetes belonging to 21 genera were recorded from field and moist chamber culture collections. A map of the study area, material & method and the checklist are available at the website http://biyoloji.uludag.edu.tr/ergul/Checklist-003. pdf
    corecore