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When two spherical bubbles touch, a hole is formed in the fluid sheet between them and
capillary pressure acting on its tightly curved edge drives an outward radial flow which
widens the hole joining the bubbles. Recent images of the early stages of this process
(Paulsen, J. D. et al., Nat. Commun. 5, 2014) show that the radius of the hole, rE,
grows proportional to t1/2 and that the rate is dependent on the fluid viscosity. Here we
explain this behaviour in terms of similarity solutions to a third-order system of radial
extensional-flow equations for the thickness and velocity of the sheet of fluid between
the bubbles, and determine the growth rate as a function of the Ohnesorge number Oh.
The initially quadratic sheet profile allows the ratio of viscous and inertial effects to be
independent of time. We show that the sheet is slender for rE � a if Oh � 1, where a
is the bubble radius, but only slender for rE � Oh2a if Oh � 1 due to a compressional
boundary layer of length L ∝ Oh rE, after which there is a change in the structure but
not the speed of the retracting sheet. For Oh � 1, the detailed analysis justifies a simple
momentum-balance argument, which gives the analytic prediction rE ∼ (32aγ/3ρ)1/4t1/2.

1. Introduction

1.1. Context

Bubbles are important in many geophysical, biological and industrial settings. Whether
exsolving from magma (Sparks 1978), scavenging surface-active bacteria in the ocean
(Blanchard 1989) or forming the head on a pint of beer, bubble–bubble coalescence influ-
ences the size distribution and consequent effects. Coalescence and film rupture are also
of intrinsic interest as fundamental processes associated with free-surface singularities.
Here we consider the case of coalescence of two initially static and spherical bubbles.

An important parameter for the generic case of drop coalescence in an outer fluid is
the ratio λ of the inner-fluid viscosity to the outer-fluid viscosity. Hopper (1984) derived
an analytic solution in two dimensions for the case λ =∞ (coalescence of drops with an
inviscid exterior) using complex-variable methods for Stokes flow, while Paulsen et al.
(2012) argued that this solution is changed by the inertia of the drops at any non-zero
Reynolds number. The intermediate case of finite, non-zero λ is a free-boundary problem
which can be approached with computational methods (Leal 1990) or at early times
with asymptotic methods for viscous flow (Eggers et al. 1999). At later times or lower
viscosities, inertia plays a role (e.g. Aarts et al. 2005; Burton & Taborek 2007). The work
described here is distinct from these studies in that it is concerned with the case λ = 0.

Bubbles start to coalesce when the fluid sheet between them is ruptured, and surface
tension acting on the edge of the resulting hole causes the sheet to retract and the hole
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Figure 1. Schematic section through the axisymmetric problem, showing the fluid sheet exterior
to the bubbles of thickness h and the velocity components u and w in the radial and axial
directions respectively. The edge of the sheet has radial position rE and thickness hE (see text).

to grow; the resistance from the viscosity and inertia of the sheet determines the rate of
growth. There is a rich history of work on rupture and retraction of fluid sheets. Taylor
and Culick independently modelled the flow as a sheet with an inviscid cylindrical rim,
moving with a velocity they found to be (2γ/ρh)1/2 for a sheet of uniform thickness h,
density ρ and surface tension γ (Taylor 1959; Culick 1960). Keller extended their ideas
to the rupture of inviscid fluid sheets with non-uniform thickness (Keller 1983). Further
numerical simulations, analytical studies and experiments have explored the effects of
viscosity on sheet rupture and shown that sufficiently high viscosity can prevent formation
of a rim (Debrégeas et al. 1995; Brenner & Gueyffier 1999; Savva & Bush 2009).

Recent images of the early stages of bubble coalescence by Paulsen et al. (2014) showed
that the growth of the hole is proportional to t1/2 for any viscosity of the outer fluid.
They observed that the rate of coalescence has one scaling in the case of a high viscosity
outer fluid, and another scaling in the case of low viscosity. Although a scaling argument
was given for these two limiting regimes, it was based on scalings that we show here do
not always capture the true thickness and radial extent of the perturbed portion of the
fluid sheet. In particular, the solution for the case of low Ohnesorge number Oh (i.e. low
viscosity) has a lengthscale much shorter than the radius of the hole by a factor of Oh.
Remarkably, we show that for general Oh the initially quadratic sheet profile permits
a similarity solution in which the ratio of viscous and inertial effects is independent of
time. Linear or uniform sheet profiles do not admit such a similarity solution (Billingham
2005; Savva & Bush 2009) unless viscosity or inertia is neglected (e.g. Keller & Miksis
1983; Ting & Keller 1990; Miksis & Vanden-Broeck 1999; Sierou & Lister 2004).

1.2. Problem overview

Consider two spherical bubbles of equal radius a and take cylindrical polar coordinates
(r, z) with the axis aligned through the centres of the spheres (see figure 1). Let the
external fluid between the bubbles have density ρ, dynamic viscosity µ, and velocity
components u and w in the radial and axial directions respectively. We assume that the
system is axisymmetric for all time, so that the azimuthal velocity is zero. We define the
Ohnesorge number by Oh = µ/(ρaγ)1/2, where γ is the (constant) coefficient of surface
tension. We neglect the viscosity of the fluid inside the bubbles, and treat the pressure
there as constant, which we may set equal to zero. We consider the case where the two
bubbles are brought together sufficiently slowly that coalescence begins essentially at the
point of geometrical contact between spherical bubbles.

Just before coalescence, the thickness of the fluid sheet for r � a is thus approximately
r2/a which is much less than the radial coordinate r. Hence the sheet is initially long
and thin, and we will assume that it remains long and thin through the early stages of
coalescence, while shortening and thickening as the edge of the sheet retracts. Let rE(t)
be the radial position of the edge of the sheet. Then near rE, surface tension acting in
the (r, z) plane smooths the edge of the sheet into a rounded tip over a radial extent
proportional to the thickness hE of the edge of the sheet. In this region, which is small if
hE � rE, the sheet is locally not long and thin, but we can match the solution for a long
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thin sheet to a local solution for the rounded tip. This structure is a two-dimensional
analogue of that described by Eggers (2014) for a retracting viscous thread, matching a
slender-thread solution to a rounded finger in Stokes flow.

The asymptotic equations of motion for the system are developed in §2, put in self-
similar form, and then solved numerically in §3. For comparison, the full Navier–Stokes
equations were simulated numerically. The calculations identify two limiting regimes, as
in Paulsen et al. (2014), and the asymptotic structure of the similarity solution in each
regime is determined in §4. Finally, §5 discusses the self-consistency of this solution, and
estimates the timescale over which this early stage of coalescence could be observed.

2. Equations of motion

As the bubbles are inviscid, the fluid sheet is bounded by shear-free surfaces. Since the
fluid sheet is long and thin, it may be described the radial form of the extensional-flow
equations, the main ideas of which are sketched below. The fluid velocity is dominantly
in the radial direction and, at leading order, is a function only of r and t. The outward
mass flux together with conservation of mass gives

∂h

∂t
= −1

r

∂

∂r

(
ruh

)
. (2.1)

Balancing the normal stress on the surface of the sheet, which is to leading order σzz,
with the capillary pressure gives the pressure in the fluid as

p = −γκ− 2µ
∂w

∂z
= −γκ+ 2µ

(
u

r
+
∂u

∂r

)
, (2.2)

where the second equality follows from local mass conservation and κ is the surface
curvature of the fluid sheet. Then balancing the radial components of the hoop stress, the
radial viscous stress and the capillary force acting on an arc of fluid with its acceleration
gives a leading-order momentum equation

ρh
Du

Dt︸ ︷︷ ︸
Inertia

= γh
∂κ

∂r︸ ︷︷ ︸
Capillary

+
2µ

r

∂

∂r

[
rh

(
u

r
+ 2

∂u

∂r

)]
︸ ︷︷ ︸

Radial Stress

−2µh

r

(
2
u

r
+
∂u

∂r

)
︸ ︷︷ ︸

Hoop Stress

, (2.3)

which agrees with results derived more formally elsewhere (e.g. Savva & Bush 2009;
Pegler & Worster 2012).

The kinematic boundary condition at the edge of the sheet simply means that the
radial velocity there must be equal to the velocity of the edge of the sheet. The capillary
force from the rounded tip, which is 2γ per unit azimuthal length to leading order, is
supported by the radial viscous stress in the sheet as the hoop stress and inertia are
negligible at the edge of the sheet (see appendix A). The boundary conditions on the
edge of the sheet are therefore

u(rE, t) =
drE
dt

and 2γ = −γhκ (rE, t)− 2µh

(
u

r
+ 2

∂u

∂r

)∣∣∣∣
rE

. (2.4a, b)

Prior to coalescence at t = 0, the fluid is static and its thickness is given by the gap
between two touching spheres. Hence

h(r, t)→ r2

a
, u(r, t)→ 0 as t→ 0+ at fixed r. (2.5a, b)

At early times, the curvature at the edge of the sheet is to leading order 2/h, which is
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much larger than the curvature hrr away from the edge since h� r, and so the surface-
curvature term γhκ in (2.4b) is negligible. Thus the dominant balance is between the
capillary pressure from the rounded tip and the viscous stress. With this balance, the
capillary term in (2.3) is also negligible. We non-dimensionalise the physical variables
using scales motivated by the boundary conditions (2.4a), (2.4b) and (2.5a), which give
u ∼ r/t, γ ∼ µhu/r and h ∼ r2/a respectively. The remaining terms in (2.3) are all
proportional to t−1/2 (the neglected capillary term is proportional to t1/2) and we deduce
that the variation h ∝ r2 in the original thickness of the sheet allows for a similarity
solution in which inertia and viscosity are in balance for all time (a uniform fluid sheet,
a fluid wedge or a cone would not admit such similarity). We define similarity variables

r =

(
aγt

µ

)1/2

η, h =
γt

µ
H(η), u =

(
aγ

µt

)1/2

U(η). (2.6a, b, c)

Equations (2.1) and (2.3) become ordinary differential equations

H ′ = H

(
1 + U ′ + U

η
η
2 − U

)
, (2.7)

1

4Oh2

(
−1

2
U − 1

2
ηU ′ + UU ′

)
= U ′′ +

U ′

η
− U

η2
+
H ′

H

(
U ′ +

U

2η

)
, (2.8)

where primes denote differentiation with respect to η. The boundary conditions become

U(ηE) =
ηE

2
and − 1

H(ηE)
=
U(ηE)

ηE

+ 2U ′(ηE) (2.9a, b)

H

η2
→ 1, ηU → 0 as η →∞, (2.9c, d)

where ηE is the dimensionless position of the edge of the sheet, and (2.9d) follows from
(2.5b) after eliminating t between (2.6a) and (2.6c). This third-order system of equations
has two boundary conditions at ηE and two boundary conditions at infinity, which also
determine the unknown ηE.

In order for H to be finite at ηE, equations (2.7) and (2.9a) require the regularity
condition 1 + U ′ + U/η = 0 where η/2 = U at ηE. We deduce that U ′(ηE) = −3/2 from
(2.9a) and H(ηE) = 2/5 from (2.9b). This gives the dimensionless thickness of the fluid
sheet where it matches to the rounded tip.

For all finite values of Oh, there is an asymptotic solution for a far-field region defined
by U � η and U ′ � 1. Under these conditions, (2.8) reduces at leading order to

U ′′ +

(
3

η
+

η

8Oh2

)
U ′ +

1

8Oh2U = 0, (2.10)

which, subject to (2.9d), has the closed-form solution

U = Ae−η
2/(16Oh2)F

(
3

2
, 2,

η2

16Oh2

)
, (2.11)

where A is a free parameter and F is the confluent hypergeometric function of the
second kind. For η � Oh, U ∼ A(4Oh/η)3e−η

2/(16Oh2). For the case Oh = ∞, or for
1� η � Oh, (2.10) is dominated by the viscous terms and U ∼ A(2π−1/2)(4Oh/η)2.

Note that equations (2.7), (2.8) and (2.9c) can be combined to show that∫ ∞
ηE

U ′ + 3U
η

η
2 − U

dη =

∫ ∞
ηE

(
H ′

H
− 2

η

)
dη =

[
log

(
H

η2

)]∞
ηE

= log

(
5η2E
2

)
(2.12)
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Figure 2. (a) Solid line: numerical solution for ηE from the similarity equations. Circles: numer-
ical estimation of ηE from the full Navier–Stokes simulations. Points: experimental data from
Paulsen et al. (2014), with boxes indicating error bars. Dashed lines: asymptotic theory for the
limits Oh � 1 and Oh � 1 calculated in §4. (b) Similarity thickness profiles H(η) for Oh = 0.01,
0.03, 0.1, 0.3, 1 and 3, and for the limit Oh =∞ as calculated in §4.2. (c) Velocity profiles U(η)
for the same values of Oh, with η and U both scaled by ηE.

where the last equality uses the condition H(ηE) = 2/5. This gives a direct relationship
between ηE and the velocity profile U(η), which is independent of H ′ and H.

3. Numerical solution

Equations (2.7) and (2.8) were solved numerically by shooting from the asymptotic
behaviour (2.11) towards the boundary conditions U = η/2 and H = 2/5 at η = ηE. We
initialised the integration at η � Oh with the far-field conditions (2.11) and H = η2,
and integrated through decreasing values of η until U = η/2. The free parameter A in
(2.11) was adjusted to search for the solution with H(ηE) = 2/5.

Figure 2(a) shows the values of ηE calculated in this way for a range of Oh similar to
the experiments of Paulsen et al. (2014). The experimental data points are also shown,
with boxes indicating error bars; Paulsen et al. (2014) give a range for γ and report
uncertainties in their measurements of τout which here lead to uncertainty in both Oh and
ηE under the similarity scalings. The numerical similarity solutions show the same trends
as the experimental data. In particular, we see two limiting regimes with ηE ∼ 1.807Oh1/2

for Oh � 1 and ηE ∼ 0.8908 for Oh � 1.
The thickness and velocity profiles in figures 2(b, c) show that the solution for Oh � 1

is to leading order independent of Oh, and for Oh & 0.1 the thickness increases mono-
tonically away from ηE. However, for Oh � 1 the sheet thins rapidly from H = 2/5 at
the edge to H ≈ η2E over a lengthscale even smaller than ηE before increasing again in
the far field. Rescaling (η − ηE) by η3E collapses these thickness profiles onto a universal
curve as Oh decreases (figure 3a). From (2.9a), U ≈ ηE/2 near ηE and scaling the small
difference (U −ηE/2) by η3E shows a similar collapse toward a universal curve (figure 3b).
Ahead of this short lengthscale, the velocity is negligible and the thickness is close to η2,
and within this short lengthscale, the velocity is ηE/2 to leading order and the thickness
is O(1). So the structure for Oh � 1 is a thickened toroidal ring expanding and sweeping
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Figure 3. Solid lines showing the numerical similarity solutions for Oh=0.001, 0.003, 0.01 and
0.03, and dashed lines showing the asymptotic limit for Oh → 0 found in §4.1. (a) The thickness
and (b) the velocity difference with (η − ηE) and (U − ηE/2) each scaled by η3E.

up fluid that is otherwise at rest, with all of the mass in the ring moving at essentially
the speed of the edge of the sheet. We note that, even though the ring has a short radial
lengthscale in the similarity solutions, the dimensional solutions are still long and thin
for sufficiently early times as h ∝ t, r ∝ t1/2 by (2.6a,b).

The coalescence of two identical bubbles was also simulated numerically by solving
the full Navier–Stokes and continuity equations in the fluid exterior to the bubbles. In
these simulations, the bubbles were initially two unit-radius spheres connected by a small
cylindrical bridge of radius R0 and half height Z0 and the exterior fluid was quiescent.
Typical values were R0 = 10−3 and Z0 = 10−6, which are sufficiently small that the effect
of initial transients decay quickly, and the subsequent dynamics are virtually unchanged
if smaller values of R0 and Z0 are used. The values of ηE in figure 2(a) were estimated
from a power-law fit over the range 0.003 6 rE 6 0.03.

Kinematic and dynamic boundary conditions are imposed on the free surfaces of the
bubbles. A stress-free outer boundary condition is imposed on a large sphere enclosing a
volume of fluid around the bubbles. The free-boundary problem comprising the Navier–
Stokes and continuity equations, and the boundary and initial conditions, is solved numer-
ically by a fully implicit method of lines (MOL) algorithm and an arbitrary Lagrangian–
Eulerian (ALE) scheme. The algorithm uses the Galerkin/finite-element method for spa-
tial discretisation and adaptive time stepping. The large interfacial and domain defor-
mations that accompany coalescence are captured by using an elliptic mesh-generation
scheme developed by Christodoulou & Scriven (1992) for coating flows and later ex-
tended to study both drop breakup and coalescence (Notz et al. 2001; Notz & Basaran
2004; Paulsen et al. 2012). Advantage is taken of both the axisymmetry and the up-down
symmetry of the two equal-sized bubble configuration to reduce the computational cost.
Additional details of the method and simulations will be provided in a future publication.

The results from simulations of the full Navier–Stokes equations give excellent agree-
ment with the similarity solution for ηE across the range of Oh, which strongly suggests
that the terms neglected in the thin-sheet modelling in §2 are indeed small.

4. Asymptotic solutions for Oh � 1 and Oh � 1

4.1. Oh� 1

Figures 2 and 3 show evidence of a boundary-layer structure with rapid variations near
ηE over a shorter O(η3E) lengthscale. A balance of the highest-derivative term U ′′ in (2.8)
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with the large advection terms, each scaling as ηEU
′/(4Oh2), motivates introduction of

a rescaled radial coordinate x = (η − ηE)/L, where L = 4Oh2/ηE, and L is O(η3E) or

O(Oh3/2) as expected.
Since U varies from ηE/2 to 0, it might seem reasonable to make the rescaling V = U/ηE

throughout the boundary layer. However, one must take care with the term (η/2−U)−1

in (2.7). Since U = η/2 at η = ηE from (2.9b), there is a region near the edge of the sheet
where the appropriate rescaling is instead ω = (U − ηE/2)/L.

We eliminate H ′/H between (2.7) and (2.8), switch to the rescaled variables V (x) and
ω(x) appropriate to each region, and take the dominant terms to obtain

−1

2
Vx + V Vx = Vxx +

V 2
x(

1
2 − V

) where (η/2− U) ∼ ηE, and (4.1)

−1

4
= ωxx +

(
ωx + 3

2

) (
ωx + 1

4

)(
x
2 − ω

) where (η/2− U) ∼ L. (4.2)

Equation (4.1) has a one-parameter family of sigmoidal solutions obeying the boundary

condition (2.9d) given by V = 1
2

(
1 + ex/2+b

)−1
and parametrised by b. As V → 1

2 , the

generic behaviour of these solutions is V = 1
2

(
1− ex/2+b

)
. The solution for the thickness

in this region is H = η2E
(
e−x/2−b + 1

)
.

The substitution ω = z(x) + x/2 makes (4.2) autonomous, and a phase-plane analysis
reveals a node at z = 0, zx = −2, which corresponds to the boundary and regularity
conditions U(ηE) = ηE/2, U ′(ηE) = −3/2. The trajectories from this node give a one-
parameter family of solutions to (4.2), whose generic behaviour as ω → −∞ has the
exponential form ω = −ekx+c(k) parametrised by k, where c(k) is an O(1) constant.

Therefore the inner behaviour of solutions to (4.1) matches the outer behaviour of
solutions to (4.2) if k = 1

2 and b = c
(
1
2

)
+ log(2L/ηE). We find c

(
1
2

)
≈ 1.473 by

numerically integrating (4.2) inwards from a point with −ω � 1 and ωx = 1
2ω. With

U determined, calculating the mass integral (2.12) gives ηE ≈ 1.807Oh1/2. The velocity
near ηE, scaled by η3E, in the limit Oh � 1 is shown with a dashed line in figure 3(a).
Now that we have the solution for U , we may integrate (2.7) to obtain the thickness H
and this completes the solution. Under the approximation U = ηE/2 + Lω, this gives
the profile shown in figure 3(b). Figure 3 shows convergence of the numerical solutions
towards the asymptotic limits, confirming that the asymptotic structure presented is
that of the calculated thickness and velocity profiles. Note that H = O(1) only where
U = ηE/2 + O(Oh rE). This justifies the structure observed in §3 of a toroidal ring
sweeping up fluid as it advances, as we have shown that where the sheet thickness is
perturbed from η2, the fluid is moving almost with the velocity of the edge of the sheet.

4.2. Oh� 1

In the viscous limit Oh � 1, neglecting the inertial terms gives the Stokes-flow equation

U ′′ +
U ′

η
− U

η2
+

(
1 + U ′ + U

η
η
2 − U

)(
U ′ +

U

2η

)
= 0. (4.3)

The generic far-field behaviour of (4.3) for η � 1 is U ∼ U∞ + U0η
−2. However, (2.10)

shows that inertia plays a role at large distances, where η = O(Oh) and the solution is the
hypergeometric function (2.11). The re-entry of inertia at large distances is analogous
to the Oseen correction to Stokes flow at large distances from a moving body. The
hypergeometric function has leading-order behaviour U ∼ 32AOh2π−1/2η−2 for η � Oh,
which matches the far-field behaviour of (4.3) for η � 1, provided U∞ = 0.
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Equation (4.3) was solved by integrating from the far-field behaviour U ∼ U0η
−2 to a

point with U = η/2. Instead of shooting with the free parameter U0, the solution with
U0 = 1 can simply be rescaled, as (2.7), (4.3) and the boundary conditions (2.9a, c, d)
are invariant under η → λη, U → λU , H → λ2H. Hence if H̃ is the height at ηE for the
solution to (4.3) with U0 = 1, then choosing λ2 = 0.4/H̃ gives the solution which also
satisfies boundary condition (2.9b). This procedure gives ηE = 0.8908 and U0 = 0.3085,
as shown in figure 2.

5. Conclusions and discussion

We have shown that when two bubbles coalesce, the retraction of the thin sheet of
fluid between them is described at early times by a similarity solution with both inertia
and viscous stress in balance. This similarity solution is characterised by the Ohnesorge
number Oh, and exhibits limiting regimes in which the edge of the sheet retracts as

rE = 0.8908

(
aγ

µ

)1/2

t1/2 if Oh � 1 or rE = 1.807

(
aγ

ρ

)1/4

t1/2 if Oh � 1. (5.1)

The spatial structure of the flow depends on Oh, with a new dimensionless radial scale
L ∼ η3E � ηE if Oh � 1. The condition for the solution to describe a slender flow is
therefore hE � rE if Oh & 1, but hE � Oh rE if Oh � 1. In the simpler case Oh & 1,
the flow is slender for times t � µa/γ, after which rE ∼ a and the surface relaxes to a
sphere of radius 21/3a. But for Oh � 1, the flow is slender only for times t� Oh3µa/γ,
at which time the sheet has only retracted to rE ∼ Oh2a, and the retracting rim has
thickened into an annular ‘blob’ of thickness hE and radial extent L both ∼ Oh3a.

This structure resembles that of an idealised, purely inviscid, blob model written down
ab initio in a short insightful paper by Keller (1983). Keller assumed that all of the fluid
from r < rE(t) collects in an expanding ring of volume πr4E/2a and that it moves with
uniform velocity drE/dt. If the only force on the ring is assumed to be surface tension 2γ
acting radially over a length 2πrE then a radial momentum balance gives

d

dt

(
πρr4E
2a

drE
dt

)
= 4πγrE, with solution rE =

(
32aγ

3ρ

)1/4

t1/2. (5.2)

Since (32/3)1/4 = 1.8072 . . ., we see that this simple inviscid model can now be sup-
ported at early times by the detailed asymptotic and numerical solutions to the full
similarity equations presented here. In particular, we note that the asymptotic separa-
tion of the regions described by (4.2) and (4.1) justifies the approximation that (almost)
all the mass of the ring moves with velocity drE/dt: we found u = (drE/dt)(1 + O(Oh))
where h ∼ hE, but the large velocity gradient between the moving ring and the undis-
turbed sheet occurs where h� hE. Radial viscous stresses play an important role in the
gradient region, accelerating the fluid from rest through a short compressional bound-
ary layer as the ring approaches it. The hoop stresses are negligible because the radial
velocity gradients are much larger than the azimuthal gradients. Moreover, we antici-
pate that Keller’s description continues to apply once the ring is no longer slender, but
has thickened into an annular blob. Continued accumulation would give a blob of size

O(r
3/2
E /a1/2) by conservation of mass, intermediate between rE and the local thickness of

the sheet r2E/a. Velocity variations and viscous stresses will be important only in a rela-
tively small volume at the junction, and so the rate of coalescence will still be described
by rE = (32aγ/(3ρ))1/4t1/2. In fact, the full Navier–Stokes simulations for Oh � 1 were
initialised with r � Oh2a and demonstrate coalescence in this regime.
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There are some small differences between the theoretical results presented here and
the experimental results of Paulsen et al. (2014). This may be because current imaging
techniques make it difficult to capture very early-time evolution with rE much smaller
than 10−1a. Moreover, the initial conditions of the theory require the bubbles to be
perfectly spherical and for the fluid to be at rest, whereas in reality the bubbles must
be moved together by some force at some velocity and there will be some draining flow
between the bubbles. This may deform the bubbles, although with the bubbles brought
together sufficiently slowly, the deformation can be limited to a small region (Davis et al.
1989). If the deformation flattens the bubbles near contact then the local curvature is
reduced, the effective value of a in (2.5a) is increased, and the entire solution could be
adapted for that value of a to give a faster rate of coalescence.

Given the idealised initial conditions, the excellent agreement between the similarity
solutions and the full Navier–Stokes simulations shows that the approximations of §2
give a full understanding of the essential dynamics of the problem.

JPM acknowledges an Engineering and Physical Sciences Research Council studentship.
CRA and OAB acknowledge the Donors of the American Chemical Society Petroleum
Research Fund for partial support of this research.

Appendix A. The rounded tip

The thin-sheet similarity equations (2.7)–(2.9) predict that the fluid sheet ends with
non-zero thickness hE = (2γt/5µ) at its retreating edge r = rE(t). Capillary forces must
act locally to smooth this edge into a rounded tip, which we argue occurs over a radial
length scale comparable to hE. For sufficiently early times, since hE ∝ t and rE ∝ t1/2,
the length scale of the rounded tip is much smaller than the length scale rE of velocity
and thickness variations in the sheet. (For Oh � 1 the length scale in the sheet is actually
Oh rE not rE, but this detail does not affect the argument.) Hence, for the rounded tip
to match onto the thin sheet on an intermediate length scale between hE and rE, the
asymptotic thickness and velocity of the rounded tip solution must match the thickness
and velocity of the edge of the sheet, and the forces must also match.

Consider the radial component of the forces acting on an arc of the rounded tip over
an azimuthal extent dθ and radial extent O(hE). (Or O(tα) with 1

2 < α < 1.) The radial

force from surface tension is 2γrEdθ ∝ t1/2. The viscous stresses scale with µu/rE ∝ t−1

(again taking rE as the scale of velocity variations for simplicity). The radial stress acts
on the join of the arc to the sheet, which has area hErEdθ ∝ t3/2, to give a force ∝ t1/2;
the hoop stress acts on the ends of the arc, which have area proportional to h2E ∝ t2

(and inclination dθ), to give a force ∝ t. The rate of change of momentum of the arc
is proportional to ρh2ErE dθu/t ∝ t. At early times, therefore, the force balance on the
tip is dominated by the radial stress and surface tension, and the effects of hoop stress
and inertia are negligible. We conclude that the matching condition to the thin-sheet
equations is indeed the boundary condition (2.4b).

We also conclude that the tip solution is asymptotically that of a two-dimensional
sheet retracting in Stokes flow and tending to uniform thickness hE; it is similar to
the viscous solution in Brenner & Gueyffier (1999), but with an additional negative
contribution to the pressure from the term u/r in (2.4b). The detailed analysis is closely
analogous to the similarity solution of Eggers (2014) for an axisymmetric retracting finger
in Stokes flow. In summary, there is a similarity solution to the Stokes equations in a
two-dimensional sheet of the form u(x, t) = (2γ/5µ)

(
U(X,Z), Y/2,W (X,Z)

)
, h(x, t) =

hE(t)H(X), where hE(t) = 2γt/5µ, (X,Y, Z) = (x, y, z)/hE, with U ∼ −3X/2, W ∼ Z
and H → 1 as X → ∞, and u(0) = 0 and H(0) = 0. This solution, with a suitable
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choice of translating origin, forms the asymptotic ‘inner’ tip solution and matches to the
‘outer’ thin-sheet solution. We have not needed to solve these two-dimensional Stokes
equations numerically, since the correction to rE(t) due to the rounded tip is only O(hE)
and therefore negligible at early times.
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