139 research outputs found

    Midge-stabilized sediment drives the composition of benthic cladoceran communities in Lake Mývatn, Iceland

    Get PDF
    The importance of environmental disturbances as drivers of ecological communities depends not only on the magnitude of the disturbance, but also on the disturbance-specific sensitivity of the community. Organisms that alter the physical structure of their surroundings can affect the sensitivity of their habitat to environmental disturbance, and may alter the potential for disturbance to shape ecological communities. Such organisms therefore act as ecosystem engineers by indirectly modifying the resources available to other species. The benthos of shallow, eutrophic Lake Mývatn, Iceland, is frequently disturbed by wind events that lead to sediment resuspension. The impact of wind, however, depends on the abundance of midges (Chironomidae) whose larval tubes bind sediment and reduce wind-driven resuspension. Here, we investigate the long-term effect of fluctuations in midge abundance on the benthic cladoceran community using two lake sediment cores representing 30 and 140 years of deposition. In both cores, midge remains show a significant positive correlation with abundance of a large benthic surface-dwelling cladoceran, Eurycercus lamellatus, relative to the abundance of a small within-sediment-dwelling cladoceran, Alona rectangula. To experimentally investigate whether this shift could have been caused by midges acting as ecosystem engineers, we subjected cladoceran communities to sediment resuspension events within mesocosms. We found a significant decrease in abundance of the large epibenthic E. lamellatus relative to the abundance of small infaunal Alona spp. when subjected to disturbance. These findings show that physical alteration of benthic sediment and hence the sensitivity of the sediment to disturbance may explain the community shift in cladocerans observed with fluctuating midge abundance in Lake Mývatn.National Science Foundation Graduate Research Fellowship. Grant Number: DGE-1256259 LTREB. Grant Number: DEB-1052160Peer Reviewe

    Repression of SOX6 transcriptional activity by SUMO modification

    Get PDF
    AbstractSOX6 plays key functions in several developmental processes, including neurogenesis and skeleton formation. In this report, we show that SOX6 is modified in vitro and in vivo by small ubiquitin-related modifier (SUMO) on two distinct sites. Mutation of both sites abolished SOX6 sumoylation and increased SOX6 transcriptional activity. SUMO dependent repression of SOX6 transcription was promoted by UBC9 whereas siRNA to UBC9, cotransfection of inactive UBC9 or a SUMO protease increased SOX6 transcriptional activity. Furthermore, co-expression of SOX6 with SUMO2 results in the appearance of SOX6 in a punctate nuclear pattern that colocalized with promyelocytic leukemia protein, which was partially abolished by mutations in SOX6 sumoylation sites

    PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3)

    Get PDF
    Review on PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3), with data on DNA, on the protein encoded, and where the gene is implicated

    PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2)

    Get PDF
    Review on PFKFB2, with data on DNA/RNA, on the protein encoded and where the gene is implicated
    corecore