
 

 

 
 

   

Gene Section 
Review 
 

Atlas Genet Cytogenet Oncol Haematol. 2014; 18(11) 838 

Atlas of Genetics and Cytogenetics 
in Oncology and Haematology 

INIST-CNRS 
 

OPEN ACCESS JOURNAL 

PFKFB2 (6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 2) 
Ana Rodríguez-García, Pere Fontova, Helga Simon, Anna Manzano, Ramon Bartrons, 
Àurea Navarro-Sabaté 

Departament de Ciencies Fisiologiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa 
Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain (ARG, PF, HS, AM, RB, ÀNS) 
 

Published in Atlas Database: March 2014 

Online updated version : http://AtlasGeneticsOncology.org/Genes/PFKFB2ID52100ch1q32.html 
DOI: 10.4267/2042/54168 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. 
© 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology 
 

Abstract 
Review on PFKFB2, with data on DNA/RNA, on 
the protein encoded and where the gene is 
implicated. 

Identity 
Other names: PFK-2/FBPase-2 

HGNC (Hugo): PFKFB2 

Location: 1q32.2 

Local order 
The human PFKFB2 gene is located on the 
chromosome 1 at position 1q31-q32.2 (GeneCards) 
(Fig. 1). 

DNA/RNA 
Description 
The human PFKFB2 is composed of 15 exons  

spanning 22617 bp (GenBank: AJ005577.1). This 
gene has 9 transcripts; two of them have been 
reported to codify a protein and three contain an 
open reading frame, but no protein has been 
identified. The transcripts are derived from different 
promoters and vary only in non-coding sequences 
at the 5' end. Therefore, the resulting proteins differ 
in their C-terminal amino acid sequence (Heine-
Suñer et al., 1998).  
The main products of the gene correspond to 
mRNAs of 7073 bp and 3529 bp for the variant 1 
(isoform a; NM_006212.2) and variant 2 (isoform 
b; NM_001018053.1), respectively (Fig. 2). The 
isoform b differs in the 3' UTR and the coding 
region compared to isoform a. The resulting 
isoform b is shorter and has a distinct C-terminus 
compared to isoform a. However, it is not known 
how these different 5' ends are related to the three 
mRNAs (H1, H2 and H4) that encode the isoform a 
or the H3 mRNA that encodes the isoform b. None 
of these mRNAs are strictly heart-specific. 

 

Figure 1. Localization of human PFKFB2 gene. 
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Figure 2. Schematic representation of the location of PFKFB2 gene in chromosome 1 and its structural organization. Description 
of the exon/intron splice junctions. Exon sequences are shown in vertical bars numbered 1-15. The sequences of 060825 and 
060825-2 correspond to variant 1 and variant 2, respectively (NCBI). 

 
The overall gene structure of the human PFKFB2 
gene has exons clustered into three groups. The first 
group contains exons 1 and 2 that are different from 
those in other PFKFB2 genes and contain the ATG 
initiation codon in exon 2. The second group 
contains exons 3-8 coding for the PFK-2 domain 
and the third group contains exons 8-15 coding for 
the FBPase-2 domain and a carboxy-terminal 
regulatory domain. Gene structure, exon-intron 
organization, as well as intron sizes, are similar to 
those of the rat and bovine homologous genes. 

Transcription 
The human PFKFB2 coding sequence consists of 
1518 bp for isoform a and 1416 bp for isoform b 
from the start codon to the stop codon, although the 
immature transcript forms contain 7904 bp and 
3494 bp, respectively. Multiple alternatively spliced 
transcript variants have been described for this gene 
(Ensembl: OTTHUMG00000036033). 

Pseudogene 
No pseudogene of PFKFB2 is known. 

Protein 
Description 
PFKFB2 is a homodimeric protein of 505 amino 
acids for isoform a and 471 for isoform b with a 
deduced molecular mass of 58 kDa and 54 kDa, 
respectively. 

PFKFB2 is an enzyme of PFKFB family, as it 
shares different structure and function with the 
others isoenzymes.  
PFKFB2 has two distinct catalytic sites in each 
subunit: one for the 6-phosphofruto-2-kinase (PFK-
2) activity and the other for the fructose-2,6-
bisphosphatase (FBPase-2) activity (El-Maghrabi et 
al., 1982; Pilkis et al., 1995; Okar et al., 2001).  
The sequence of the catalytic core is highly 
conserved, whereas the N-terminal and C-terminal 
regions show more divergence (Rider et al., 2004). 
PFK-2/FBPase-2 activities control fructose-2,6-
bisphosphate (Fru-2,6-P2) synthesis and 
degradation, regulating the rate of glucose 
metabolism.  
More information about PFKFB2 protein can be 
found in Uniprot O60825. 

Expression 
PFKFB2 protein is expressed mainly in heart, 
although expression is also found in other tissues at 
lesser extent (Minchenko et al., 2002). Moreover, it 
is expressed in different cancer cell lines such as T-
lymph Jurkat, K562 erythroleukemia, liver HepG2, 
lung A549, colon RKO, bone U2OS, brain GAMG, 
prostate LnCap, cervix HeLa and breast MCF7. All 
this information can be found in GeneCards 
(sections proteins and expression). 
According to the RNAseq database, this gene can 
also be expressed in thyroid, brain, kidney, skeletal 
muscle, ovary, testis and others. 
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Figure 3. PFKFB2 activities and function in the glycolytic pathway in heart during hypoxia. 
 
Localisation 
PFKFB2 protein is active in the cytosol. 

Function 
This enzyme regulates the concentration of Fru-2,6-
P2 through the two catalytic domains. PFK-2 
domain catalyzes the synthesis of Fru-2,6-P2, using 
fructose-6-phosphate (Fru-6-P) and adenosine-5-
triphosphate (ATP) as substrates; FBPase-2 domain 
catalyzes the degradation of Fru-2,6-P2 into Fru-6-P 
and inorganic phosphate (Pi). These two mutually 
opposing catalytic activities are controlled by 
different mechanisms such that each activity is 
predominant in a given physiological condition. In 
detail, the reactions catalyzed are: 
Kinase catalytic activity: ATP + D-fructose-6-
phosphate ⇔ ADP + beta-D-fructose-2,6-
bisphosphate 
Phosphatase catalytic activity: Beta-D-fructose-2,6-
bisphosphate + H2O ⇔ D-fructose-6-phosphate + 
phosphate 
The rate of glycolytic flux is controlled at different 
levels and by different mechanisms: substrate 
availability, enzyme concentrations, allosteric 
effectors and covalent modifications on regulatory 
enzymes. One of the critically modulated steps is 
that catalyzed by 6-phosphofructo-1-kinase (PFK-
1), in which Fru-2,6-P2 is the most powerful 
allosteric activator (Van Schaftingen, 1987; Okar 
and Lange, 1999; Rider et al., 2004). Fru-2,6-P2 
relieves ATP inhibition and acts synergistically 

with adenosine monophosphate (AMP), inhibiting 
fructose 1,6-bisphosphatase (Fru-1,6-Pase) (Van 
Schaftingen, 1987). These properties confer to this 
metabolite a key role in the control of Fru-6-P/Fru-
1,6-P2 substrate cycle and hence critically regulates 
carbohydrate metabolism (Fig. 3). 
In vertebrates, there are four different PFKFB genes 
(PFKFB1, PFKFB2, PFKFB3 and PFKFB4), which 
encode the PFK-2/FBPase-2 isoenzymes. Each of 
these enzymes has been originally identified in 
different mammalian tissues: PFKFB1 in liver and 
skeletal muscle, PFKFB2 in heart, PFKFB3 in 
brain, adipose tissue and proliferating cells, and 
PFKFB4 in testis (Okar et al., 2004; Rider et al., 
2004). However, all four are widely expressed 
throughout the adult organism. These isoenzymes 
show differences in their distribution and kinetic 
properties in response to allosteric effectors, 
hormonal, and growth factors signals (Okar et al., 
2001). PFKFB2 enzyme is overexpressed in 
different cancer cells like melanoma, prostate, 
pancreatic, gastric and mammary gland cells 
(Minchenko et al., 2005a; Minchenko et al., 2005b; 
Bobarykina et al., 2006). For more information 
about PFKFB genes see: PFKFB3 (6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 
3) and PFKFB4 (6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 4). 
Regulation 
PFKFB2 is an essential enzyme for the regulation 
of glycolysis in heart. PFKFB2 is multisite-
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phosphorylated, integrating signaling from many 
pathways via protein kinase cascades to a single 
molecule, Fru-2,6-P2, to stimulate glycolysis. 
The human PFKFB2 protein contains the Ser 29, 
Ser 466, Thr 475 and Ser 483 residues that regulate 
the activity of the enzyme. These residues are 
located in its C-terminal domain and can be 
phosphorylated by protein kinases such as AMPK, 
3-phosphoinositide-dependent kinase-1 (PDK-1), 
cAMP-dependent protein kinase (protein kinase A; 
PKA), protein kinase B (PKB; also known as Akt), 
p70 ribosomal S6 kinase (S6K1), and mitogen-
activated protein kinase 1 (MAPK-1). 
Phosphorylation of PFKFB2 results in the 
activation of the enzyme, increasing Vmax of PFK-2 
activity. The variations in PFK-2 activity, however, 
appear to be different with the phosphorylation by 
the different kinases (Marsin et al., 2000; Rider et 
al., 2004). 
In perfused rat hearts, it has been shown that the 
concentration of Fru-2,6-P2 is raised by increasing 
the work load, after hypoxia or stimulation with 
adrenalin or insulin (Hue et al., 1982; Rider and 
Hue, 1984; Depre et al., 1993; Deprez et al., 1997). 
This activation is probably mediated by the 
phosphorylation of three conserved residues (Ser 
466, Thr 475 and Ser 483) by specific protein 
kinases (Depre et al., 1993; Deprez et al., 1997). 
Insulin stimulates glycolysis in heart by a 
combination of an increase in glucose transport and 
activation of PFKFB2 (Depré et al., 1998; Hue et 
al., 2002). Two serine residues, Ser 466 ad Ser 483 
can be phosphorylated in vitro by PKB in response 
to insulin resulting from a 2-fold increase in both 
Vmax and affinity for Fru-6-P, one of the substrates 
of PFK-2 (Lefebvre et al., 1996; Deprez et al., 
1997). 
Rat heart PFKFB2 is activated by insulin in vivo 
through a 2-fold increase in Vmax with no change in 
Km for Fru-6-P (Rider and Hue, 1984). Moreover, it 
has been shown that the insulin-induced activation 
of PFKFB2 was blocked by wortmannin, a PI3K 
inhibitor, but was insensitive to rapamycin or 
PD098059, which prevent the activation of p70S6K 
and the MAPK cascade, respectively (Lefebvre et 
al., 1996). These results suggest that PI3K, but not 
p70S6K, is involved in the activation of PFKFB2 in 
response to insulin. New in vitro and in vivo 
experiments show that SGK3 is not required for 
insulin-induced heart PFK-2 activation and this 
effect is likely mediated by PKBα (Mouton et al., 
2010). Moreover, it has been proposed that 14-3-3s, 
that have been implicated in promoting cell survival 
(Masters et al., 2002), bind to PFK-2 at Ser 483 
when it is phosphorylated by PKB in vitro in 
response to insulin or in cells that are stimulated 
with IGF-1 or transfected with active forms of 
PKB, mediating the stimulation of glycolysis by 
growth factors (Pozuelo et al., 2003). 

Glycolysis in heart also increases in response to 
increased the workload (Depre et al., 1993; 
Beauloye et al., 2002), rising Fru-2.6-P2 due to the 
activation of PFKFB2. The increase on workload 
activates PKB but not p70 S6K and this increase is 
blocked by wortmannin and is rapamycin-
insensitive. Ca/CAMK (Ca2+/calmodulin-activated 
protein kinase) is which phosphorylates and 
activates PFKFB2 secondarily to a rise in 
cytoplasmatic Ca22+ (Depre et al., 1993; Beauloye 
et al., 2002). 
Adrenalin administration in perfused rat hearts 
suggests that PKA may be responsible for the 
activation of PFKFB2, which accounts for the 
increased Fru-2,6-P2 levels (Narabayashi et 
al.,1985). This hormone promotes PFKFB2 
phosphorylation by PKA in the residues already 
described in vitro, which are Ser 466 and Ser 483. 
These phosphorylations have an impact on PFK-2 
activity, decreasing the Km for Fru-6-P (Kitamura et 
al., 1988; Rider et al., 1992a; Rider et al., 1992b). 
PFKFB2 mRNA is induced in organs exposed to 
hypoxic conditions. Activation of the AMP-
activated protein kinase (AMPK) during ischemia 
or hypoxia leads to phosphorylation of PFKFB2 at 
Ser 466 which increases the levels of Fru-2,6-P2 
and stimulates glycolysis. PFKFB2 phosphorylation 
leads to an increase in Vmax with no change in Km 
for Fru-6-P (Marsin et al., 2000). Other studies 
have described PFKFB2 as a hypoxia-responsive 
gene in vivo but the regulation of its expression 
following hypoxic treatments appears to occur in a 
cell-specific manner. The mechanism underlying 
the expression of each isoform in different tissues 
remains unclear (Minchenko et al., 2002). 
Moreover, amino acids increase the synthesis of 
Fru-2,6-P2 in HeLa and MCF7 cell lines by 
phosphorylation at PFKFB2 at Ser 483. This 
activation is mediated by PI3K and PKB. Similar 
effects on Fru-2,6-P2 metabolism were observed in 
freshly isolated rat cardiomyocytes treated with 
amino acids, which indicates that these effects are 
not restricted to human cancer cells. In these 
cardiomyocytes, PFKFB2 phosphorylation 
increases glucose consumption and the production 
of lactate and ATP (Novellasdemunt et al., 2013). 
PFKFB2 is also a substrate of PKC which 
phosphorylates Ser 84, Ser 466 and Thr 475 (Rider 
and Hue, 1986; Kitamura et al., 1988; Rider et al., 
1992a; Rider et al., 1992b). However, the 
physiological significance of phosphorylation of 
Ser 84, Ser 466 and Thr 475 of PFKFB2 by PKC is 
not completely understood. It seems that 
phosphorylation of Ser 466 or Thr 475 does not 
change the enzyme activity. This might be due to 
the fact that the phosphorylation at Ser 84 possibly 
counteracts the effects of phosphorylation at the 
activating C-terminal sites (Kitamura et al., 1988; 
Rider et al., 1992b). 
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The mechanism of control of PFKFB2 isoenzyme 
by phosphorylation is also difficult to explain in the 
absence of a crystal structure of the phosphorylated 
isoenzyme. Phosphorylation of Ser 466 and Ser 483 
at the C-terminal end of the bovine heart isoenzyme 
by PKA (Kitamura et al., 1988; Rider et al., 1992a; 
Rider et al., 1992b; Deprez et al., 1997) and insulin-
stimulated protein kinases (Deprez et al., 1997) 
activates PFK-2 by decreasing Km for Fru-6-P and 
by increasing the Vmax without affecting FBPase-2. 
Ser 466 phosphorylation is responsible for the 
increase in Vmax whereas both phosphorylations are 
necessary to decrease the Km for Fru-6-P (Bertrand 
et al., 1999). 
Regulatory sequences that account for some of the 
mechanisms involved in the long-term hormonal 
control and tissue-specific expression of PFKFB2 
have been identified. The 5' flanking sequence of 
PFKFB2 contains regions that are conserved 
between the human, bovine and rat genes. In these 
regions, several potential binding sites for the Sp1, 
HNF-1 and BHLH (helix-loop-helix) (E boxes) 
transcription factors and for the GR have been 
described (Tsuchiya and Uyeda, 1994; Chikri and 
Rousseau, 1995; Heine-Suñer et al., 1998), but a 
factor binding to these sites has not been reported. 
Chromosomal rearrangements: copy number 
variants 
There are three alterations affecting PFKFB2 
genome region described in patients. One of them, 
the gain of 1:195266734-216326885, shows 
phenotypic effects such us visual impairment, low-
set ears, iris coloboma, intellectual disability, defect 
in the atrial septum, ventricular septal defect and 
vertical nystagmus. For more information see 
DECIPHER. 
No syndrome or disease was found in OMIM  
 

database. 

Homology 
Location in the mouse: chromosome 1, 56,89 cM, 
cytoband E4, 130689043-130729253 bp, 
complement strand (MGI). 
For a comparison of the gene from Homo sapiens, 
mouse, rat, cattle, chimpanzee, chicken, zebrafish, 
rhesus macaque and dog see MGI. 
Also for all species known gene tree, see Treefam 
database. 
It appears that the use of Fru-2,6-P2 as a regulatory 
metabolite is a specifically eukaryotic phenomenon. 
The most plausible hypothesis for the origin of the 
PFK-2/FBPase-2 would be the fusion of two 
ancestral genes coding for a kinase functional unit 
and a phosphohydrolase/mutase unit, respectively. 
From protein sequence alignments, it is clear that 
the bisphosphatase activity located in the C-
terminal domain of the PFK-2/FBPase-2, the 
phosphoglycerate mutases (PGAMs) and the acid 
phosphatase family diverged from a common 
ancestor (Jedrzejas, 2000; Okar et al., 2001). 
Alignments of the bisphosphatase domain with 
PGM and acid phosphatase can be obtained at EBI. 
On the other hand, PFK-2 domain is related to a 
superfamily of mononucleotide binding proteins 
including adenylate kinase (AK) of E. coli., p21 
Ras, EF-tu, the mitochondrial ATPase- β-subunits 
and myosin ATPase, all of them contain the Walker 
A and B motifs and have a similar fold (Rider et al., 
2004). 
Orthologs (from BLAST Local Alignment Tool) 
Results from BLAST Local Alignment Tool are 
shown in Figure 5. Only the annotated proteins are 
reported, the predicted proteins appearing in the 
local alignment were excluded. 
 

 

Figure 4. Domain organization and phosphorylation of PFKFB2 isoenzyme. The N-terminal PFK-2 domain is shown in violet, the 
C-terminal FBPase-2 domain is shown in red and the regulatory domains are shown in blue. Phosphorylation sites, the stimuli 
and the kinases responsible of their phosphorylation are indicated. 
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Figure 5. Orthologs for PFKFB2 gene from BLAST Local Alignment Tool. 
 

 
Comparison of the PFKFB2 cDNA sequence with 
the bovine and rat 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase (PFK-
2/FBPase-2) heart isoforms shows 87-90% 
nucleotide and 92-95% amino acid identity (Sakata 
and Uyeda, 1990; Darville et al., 1991). 

Mutations 
Note 
Genomic variants 
There are 647 SNP variants described in PFKFB2 
(see GeneCards). 
The most SNP are found in non coding regions: 418 
are presented in introns, 3 in splice donor variant, 
107 in 3' UTR and 25 variant within a half kb of the 
end of gene and others. 
Furthermore, 61 SNP are presented with the coding 
regions. The most of them are missense (31 
variants) and also synonymous variants (19 
variants) and only one frameshift. 

Somatic 
49 somatic mutations in the PFKFB2 gene detected  

in patient tumor samples are collected in the 
COSMIC database. 
Coding silent substitutions: 20, which represent 
40.8% of the mutations described among all 
patients.  
Two of them have been found in two patients: 
c.1008C>G (p.T336T) and c.1419G>A (p.S473S). 
Nonsense substitutions: 1, located in c.1051C>T 
(p.R351*). 
Missense substitutions: 23, which represent 46.9% 
of the mutations described among all patients. 
Deletions frameshift: 1, located in c.1044delT 
(p.F348fs*66). 
Insertion frameshift: 1, located in c.703_407insT 
(p.Q235fs*37). 
Deletion inframe: 2, located in c.28_30delAAC 
(p.N12delN) and in in c.82_84delTGT 
(p.C28delC). 
Unknown mutation: 2, one of them located in 
c.376-2A>T and the other in c.840+1G>A. 
No synonymous substitutions or chromosomal 
fusions in PFKFB2 gene have been described in 
any tumor sample. 
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Figure 6. Histogram of mutations found among the amino acid sequence of PFKFB2 protein. The maximum number of 
substitutions at any specific genomic region is represented in Y axis. 6-phosphofructo-2-kinase and histidine phosphatase 
superfamily domains are represented in green and red respectively. From: COSMIC Database. 
 

Implicated in 

Various cancers 
Oncogenesis 
Cancer cells energy metabolism is characterized by 
a high glycolytic rate, which is maintained under 
aerobic conditions, when compared to non-
malignant cells. The concentration of Fru-2,6-P2 is 
generally increased due to overexpression and 
activation of PFK-2. Adrenaline, insulin, hypoxia 
and workload stimulate heart glycolysis by 
activating PFKFB2, hence producing a subsequent 
rise in Fru-2,6-P2 concentration (Marsin et al., 
2000; Rider et al., 2004).  
Hypoxia is an important component of the tumor 
microenvironment. One key mediator of the 
hypoxic response in animal cells is the hypoxia-
inducible factor (HIF) complex, a transcription 

factor frequently deregulated in cancer cells that 
induces the expression of glycolytic genes 
(Bartrons and Caro, 2007).  
In culture cells, hypoxia induces PFKFB2 in HeLa 
and MCF7 cells. These data demonstrate that 
PFKFB2 is one of the responsive to hypoxia in 
vivo, indicating a physiological role in the 
adaptation of the organism to environmental or 
localized hypoxia/ischemia. Marsin et al. (2000) 
showed that AMPK phosphorylates PFKFB2 at Ser 
466 in hypoxia conditions and this could contribute 
to maintain the high glycolytic rate that is a 
characteristic feature of many tumors. 

Acute lymphoblastic leukemia 
Note 
Alterations in glucose metabolism have been 
implicated in cell death and survival decisions, 
particularly in the lymphoid lineage (Plas et al., 
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2002) and in transformed cells (Tennant et al., 
2010).  
PFKFB2 was identified by microarray analysis of 
lymphoblasts isolated from glucocorticoid-treated 
children suffering from ALL (acute lymphoblastic 
leukemia) as one of the most promising candidate 
genes as a glucocorticoid (GC)-response gene, since 
it was regulated in the majority of patients. Its 
deregulation was proposed to entail disturbances in 
glucose metabolism which, in turn, have been 
implicated in cell death induction (Schmidt et al., 
2006). These data suggest that cellular metabolism 
and apoptosis might be intertwined with 
connections between regulation of cellular 
bioenergetics and apoptosis. Carlet et al. (2010) 
demonstrated that both splice variants of PFKFB2 
are expressed and specifically induced by GC in 
malignant lymphoid cells, however, functional 
analysis of this gene in the human T-ALL cell line 
model CCRF-CEM revealed that its over-
expression does not explain the anti-leukemic 
effects of GC. 

Prostate cancer 
Note 
In the early stages of prostate cancer, the androgen 
receptor (AR) is one of the key regulators that 
mediates tumor growth, promoting glucose uptake 
and anabolic metabolism, and modulates gene 
expression. Massie et al. (2011), using multiple 
metabolomic approaches, demonstrated that 
PFKFB2 is up-regulated as a consequence of the 
transcriptional changes by AR, with possible 
control through the AR-CAMKII-AMPK signaling 
pathway.  
Other studies performing microarray analysis, using 
total RNA isolated from LNCaP cells treated with 
or without R1881 (methyltreinolone), a synthetic 
androgen, showed that androgens induce PFKFB2 
expression in LNCaP cells (androgen-sensitive 
human prostate adenocarcinoma cells) by the direct 
recruitment of the ligand-activated AR to the 
PFKFB2 promoter. Moreover, depletion of 
PFKFB2 expression using siRNA (small interfering 
RNA) or inhibiting the PFK-2 activity with 
LY294002 (inhibitor of PI3K) treatment resulted in 
a reduced glucose uptake and lipogenesis, 
suggesting that the induction of de novo lipid 
synthesis by androgens requires the transcriptional 
up-regulation of PFKFB2 in prostate cancer cells 
(Moon et al., 2011). 

Gastric cancer 
Note 
PFKFB2 mRNA expression is increased in 
malignant gastric tumors as well as the expression 
of known HIF-1-dependent genes, Glut1 (glucose 
transporter 1) and VEGF (vascular endothelial 
growth factor), supporting the HIF-dependent 

character of the induction of expression of the 
PFKFB2 (Bobarykina et al., 2006). 

Hepatocellular cancer 
Note 
In immuhistochemistry samples of hepatocellular 
carcinoma, it has been recently found that high 
expression of MACC1 (metastasis associated in 
colon cancer 1), a key regulator of the HGF/Met-
pathway, correlates with high expression of 
PFKFB2. This correlation has an effect on TNM 
stage (classification of malignant tumors), overall 
survival and Edmondson-Steier classification (Ji et 
al., 2014). 

Papillary thyroid cancer 
Note 
The extent and presentation of papillary thyroid 
cancer (PTC) in adolescents and young adults 
(AYAs) is different than in older patients. This 
difference may be due to several candidate genes 
that are differentially expressed and which may 
have important roles in tumor cell biology. One of 
these genes is PFKFB2 but future functional 
genomics studies are needed to shed further light on 
whether a biologic basis exists to account for the 
disparity in AYA cancer incidence and outcome 
(Vriens et al., 2011). 

Heart diseases 
Note 
In the heart, acute ischemia induces rapid activation 
of AMPK which phosphorylates Ser 466 leading to 
a two-fold increase in the Vmax of PFKFB2 (Hue et 
al., 2002). mRNA analysis indicated that PFKFB2 
is expressed at high levels not only in the heart but 
also in the brain and lungs. However, in vivo 
experiments showed that hypoxia induce moderate 
expression in the lung and liver and very strong 
stimulation in the testis. No induction or even mild 
inhibition was found in the heart, kidney, brain and 
skeletal muscle. Myocardial ischemia induces a 
shift to anaerobic metabolism, with a rapid 
stimulation of glycolysis (Wang et al., 2008). 
Tetralogy of Fallot (TOF) is a heart defect in 
children that results in chronic progressive right 
ventricular pressure overload and shunt hypoxemia. 
Western blot, RT-qPCR (real time PCR) and 
immunohystochemical analysis revealed that 
PKFB2 expression and mRNA of PFKFB2 
increased significantly in TOF patients.  
Like tumors, under pathological stress conditions, 
cardiomyocytes gradually come to rely on 
glycolysis to satisfy their main energy 
requirements.  
That is why these results suggest that PFKFB2 
plays an important role in certain biological 
processes related to cardiac remodeling, which 
occurs in response to chronic hypoxia and long-
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term pressure overload in TOF patients (Xia et al., 
2013). 
Glycolysis increases in cognitive heart failure 
(CHF), cardiac hypertrophy and cardiac ischemia 
(Neely et al., 1975).  
Some studies producing mice with chronic and 
stable elevation of cardiac Fru-2,6-P2 showed 
significant change in cardiac metabolite 
concentrations, increased glycolysis, reduced 
palmitate oxidation and protection of isolated 
myocytes from hypoxia.  
Taken together, these results show that PFKFB2 is 
one of the enzymes that control cardiac glycolysis, 
producing an increase in Fru-2,6-P2, causing 
detrimental effects and suggesting that the elevation 
of glycolysis in failing hearts could be injurious to 
an already compromised heart (Wang et al., 2008). 

Inflammation 
Note 
It has been shown that purified human CD3+ T 
cells express PFKFB2 (Telang et al., 2012).  
CCL5 (proinflammatory chemokine) treatment of 
ex vivo activated human CD3+ T cells induced the 
activation of the nutrient-sensing kinase AMPK and 
downstream substrates like PFKFB2, suggesting 
that both glycolysis and AMPK signaling are 
required for efficient T cell migration in response to 
CCL5, relating therefore PFKFB2 with T-cell 
activation and migration (Chan et al., 2012). 

Mental disorders 
Note 
Schizophrenia presents impaired glucose 
regulation. Stone et al. (2004), using a genome 
scan, found that PFKFB2 shows linkage with 
schizophrenia in a multiple sample of subjects 
(European-American samples).  
However, it is necessary to replicate these results 
with other samples and if PFKFB2 contributes on 
the liability for schizophrenia, its influence is likely 
to be modest, as most cases of schizophrenia are 
likely to result from multiple factors. 

Growth restriction and development 
Note 
Infants with intrauterine growth restriction (IUGR) 
have a low weight at birth as a result of pathologic 
restriction of fetal growth (Wollmann, 1998). 
cDNA microarrays, RT-qPCR and Western blot 
analysis revealed that PFKFB2 expression increases 
in placentas from pregnancies with IUGR causing 
hypoglycemia.  
However, further studies have to be performed in 
order to elucidate the role of PFKFB2 in glucose 
metabolism on IUGR placenta (Lee et al., 2010). 
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