23,188 research outputs found
The Equivalence Principle Revisited
A precise formulation of the strong Equivalence Principle is essential to the
understanding of the relationship between gravitation and quantum mechanics.
The relevant aspects are reviewed in a context including General Relativity,
but allowing for the presence of torsion. For the sake of brevity, a concise
statement is proposed for the Principle: "An ideal observer immersed in a
gravitational field can choose a reference frame in which gravitation goes
unnoticed". This statement is given a clear mathematical meaning through an
accurate discussion of its terms. It holds for ideal observers (time-like
smooth non-intersecting curves), but not for real, spatially extended
observers. Analogous results hold for gauge fields. The difference between
gravitation and the other fundamental interactions comes from their distinct
roles in the equation of force.Comment: RevTeX, 18 pages, no figures, to appear in Foundations of Physic
State Responsibility for Fostering Participation and Social Justice. Some Reflections on Policies for Low Skilled Adults in Portugal and Italy
This article aims at discussing the state responsibility concerning educational rights as a framework to problematize issues of social justice on two national contexts of South Europe with an expressive vulnerable adult population concerning qualifications. We supported our analysis of national ALE public policies on Toma\u161evski (2001) theoretical and analytical framework that focuses on the accomplishment of the right of education by national states. Research goals are to analyse and compare ALE as a human right in the context of both states obligations, and to qualitatively evaluate selected national policies as fostering participation and social justice. This article responds to the follow question: what are the national policies that contribute to express ALE as a human right and why? It presents the scenarios obtained through Toma\u161evski model and point out to interesting differences between Portuguese and Italian case
Models for the 3-D axisymmetric gravitational potential of the Milky Way Galaxy - A detailed modelling of the Galactic disk
Aims. Galaxy mass models based on simple and analytical functions for the
density and potential pairs have been widely proposed in the literature. Disk
models constrained by kinematic data alone give information on the global disk
structure only very near the Galactic plane. We attempt to circumvent this
issue by constructing disk mass models whose three-dimensional structures are
constrained by a recent Galactic star counts model in the near-infrared and
also by observations of the hydrogen distribution in the disk. Our main aim is
to provide models for the gravitational potential of the Galaxy that are fully
analytical but also with a more realistic description of the density
distribution in the disk component. Methods. From the disk model directly based
on the observations (here divided into the thin and thick stellar disks and the
HI and H disks subcomponents), we produce fitted mass models by combining
three Miyamoto-Nagai disk profiles of any "model order" (1, 2, or 3) for each
disk subcomponent. The Miyamoto-Nagai disks are combined with models for the
bulge and "dark halo" components and the total set of parameters is adjusted by
observational kinematic constraints. A model which includes a ring density
structure in the disk, beyond the solar Galactic radius, is also investigated.
Results. The Galactic mass models return very good matches to the imposed
observational constraints. In particular, the model with the ring density
structure provides a greater contribution of the disk to the rotational support
inside the solar circle. The gravitational potential models and their
associated force-fields are described in analytically closed forms, and in
addition, they are also compatible with our best knowledge of the stellar and
gas distributions in the disk component. The gravitational potential models are
suited for investigations of orbits in the Galactic disk.Comment: 22 pages, 13 figures, 11 tables, accepted for publication in A&
Disorder-induced double resonant Raman process in graphene
An analytical study is presented of the double resonant Raman scattering
process in graphene, responsible for the D and D features in the
Raman spectra. This work yields analytical expressions for the D and
D integrated Raman intensities that explicitly show the dependencies
on laser energy, defect concentration, and electronic lifetime. Good agreement
is obtained between the analytical results and experimental measurements on
samples with increasing defect concentrations and at various laser excitation
energies. The use of Raman spectroscopy to identify the nature of defects is
discussed. Comparison between the models for the edge-induced and the
disorder-induced D band intensity suggests that edges or grain boundaries can
be distinguished from disorder by the different dependence of their Raman
intensity on laser excitation energy. Similarly, the type of disorder can
potentially be identified not only by the intensity ratio
, but also by its laser energy
dependence. Also discussed is a quantitative analysis of quantum interference
effects of the graphene wavefunctions, which determine the most important
phonon wavevectors and scattering processes responsible for the D and
D bands.Comment: 10 pages, 4 figure
- …
