14,639 research outputs found

    Breaking the electroweak symmetry and supersymmetry by a compact extra dimension

    Full text link
    We revisit in some more detail a recent specific proposal for the breaking of the electroweak symmetry and of supersymmetry by a compact extra dimension. Possible mass terms for the Higgs and the matter hypermultiplets are considered and their effects on the spectrum analyzed. Previous conclusions are reinforced and put on firmer ground.Comment: 25 pages, LaTeX, 9 eps figure

    Oceanographic applications of the Kalman filter

    Get PDF
    The Kalman filter is a data-processing algorithm with a distinguished history in systems theory. Its application to oceanographic problems is in the embryo stage. The behavior of the filter is demonstrated in the context of an internal equatorial Rossby wave propagation problem

    QCD Radiative Corrections to the Leptonic Decay Rate of the B_c Meson

    Full text link
    The QCD radiative corrections to the leptonic decay rate of the BcB_c meson are calculated using the formalism of nonrelativistic QCD (NRQCD) to separate short-distance and long-distance effects. The BcB_c decay constant is factored into a sum of NRQCD matrix elements each multiplied by a short-distance coefficient. The short-distance coefficient for the leading matrix element is calculated to order αs\alpha_s by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in NRQCD. This short-distance correction decreases the leptonic decay rate by approximately 15%15\%.Comment: Changed Eq. 2 to read 1/(8 \pi), put in a missing i M_{B_c} in Eq. 18, and put in a normalisation factor of 2 M_{B_c} in Eq. 19

    Rigorous QCD Predictions for Decays of P-Wave Quarkonia

    Get PDF
    Rigorous QCD predictions for decay rates of the P-wave states of heavy quarkonia are presented. They are based on a new factorization theorem which is valid to leading order in the heavy quark velocity and to all orders in the running coupling constant of QCD. The decay rates for all four P states into light hadronic or electromagnetic final states are expressed in terms of two phenomenological parameters, whose coefficients are perturbatively calculable. Logarithms of the binding energy encountered in previous perturbative calculations of P-wave decays are factored into a phenomenological parameter that is related to the probability for the heavy quark-antiquark pair to be in a color-octet S-wave state. Applying these predictions to charmonium, we use measured decay rates for the \chione and \chitwo to predict the decay rates of the \chizero and hch_c.Comment: 13 page

    Logarithmic SUSY electroweak effects on four-fermion processes at TeV energies

    Full text link
    We compute the MSSM one-loop contributions to the asymptotic energy behaviour of fermion-antifermion pair production at future lepton-antilepton colliders. Besides the conventional logarithms of Renormalization Group origin, extra SUSY linear logarithmic terms appear of "Sudakov-type". In the TeV range their overall effect on a variety of observables can be quite relevant and drastically different from that obtained in the SM case.Comment: 19 pages and 14 figures, corrected version. e-mail: [email protected]

    The Neron-Severi group of a proper seminormal complex variety

    Full text link
    We prove a Lefschetz (1,1)-Theorem for proper seminormal varieties over the complex numbers. The proof is a non-trivial geometric argument applied to the isogeny class of the Lefschetz 1-motive associated to the mixed Hodge structure on H^2.Comment: 16 pages; Mathematische Zeitschrift (2008

    Calculation of the One- and Two-Loop Lamb Shift for Arbitrary Excited Hydrogenic States

    Get PDF
    General expressions for quantum electrodynamic corrections to the one-loop self-energy [of order alpha(Zalpha)^6] and for the two-loop Lamb shift [of order alpha^2(Z\alpha)^] are derived. The latter includes all diagrams with closed fermion loops. The general results are valid for arbitrary excited non-S hydrogenic states and for the normalized Lamb shift difference of S states, defined as Delta_n = n^3 DeltaE(nS) - DeltaE(1S). We present numerical results for one-loop and two-loop corrections for excited S, P and D states. In particular, the normalized Lamb shift difference of S states is calculated with an uncertainty of order 0.1 kHz.Comment: 4 pages, RevTe
    corecore