117 research outputs found

    Upper bounds on wavepacket spreading for random Jacobi matrices

    Full text link
    A method is presented for proving upper bounds on the moments of the position operator when the dynamics of quantum wavepackets is governed by a random (possibly correlated) Jacobi matrix. As an application, one obtains sharp upper bounds on the diffusion exponents for random polymer models, coinciding with the lower bounds obtained in a prior work. The second application is an elementary argument (not using multiscale analysis or the Aizenman-Molchanov method) showing that under the condition of uniformly positive Lyapunov exponents, the moments of the position operator grow at most logarithmically in time.Comment: final version, to appear in CM

    Quantum Return Probability for Substitution Potentials

    Full text link
    We propose an effective exponent ruling the algebraic decay of the average quantum return probability for discrete Schrodinger operators. We compute it for some non-periodic substitution potentials with different degrees of randomness, and do not find a complete qualitative agreement with the spectral type of the substitution sequences themselves, i.e., more random the sequence smaller such exponent.Comment: Latex, 13 pages, 6 figures; to be published in Journal of Physics

    The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian

    Get PDF
    We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as λ\lambda \to \infty, dim(σ(Hλ))logλ\dim (\sigma(H_\lambda)) \cdot \log \lambda converges to an explicit constant (0.88137\approx 0.88137). We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schr\"odinger dynamics generated by the Fibonacci Hamiltonian.Comment: 23 page

    Quantum electrodynamics of relativistic bound states with cutoffs

    Full text link
    We consider an Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.Comment: To appear in "Journal of Hyperbolic Differential Equation

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances

    Intermixture of extended edge and localized bulk energy levels in macroscopic Hall systems

    Full text link
    We study the spectrum of a random Schroedinger operator for an electron submitted to a magnetic field in a finite but macroscopic two dimensional system of linear dimensions equal to L. The y direction is periodic and in the x direction the electron is confined by two smooth increasing boundary potentials. The eigenvalues of the Hamiltonian are classified according to their associated quantum mechanical current in the y direction. Here we look at an interval of energies inside the first Landau band of the random operator for the infinite plane. In this energy interval, with large probability, there exist O(L) eigenvalues with positive or negative currents of O(1). Between each of these there exist O(L^2) eigenvalues with infinitesimal current O(exp(-cB(log L)^2)). We explain what is the relevance of this analysis to the integer quantum Hall effect.Comment: 29 pages, no figure

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland

    New characterizations of the region of complete localization for random Schr\"odinger operators

    Full text link
    We study the region of complete localization in a class of random operators which includes random Schr\"odinger operators with Anderson-type potentials and classical wave operators in random media, as well as the Anderson tight-binding model. We establish new characterizations or criteria for this region of complete localization, given either by the decay of eigenfunction correlations or by the decay of Fermi projections. (These are necessary and sufficient conditions for the random operator to exhibit complete localization in this energy region.) Using the first type of characterization we prove that in the region of complete localization the random operator has eigenvalues with finite multiplicity

    (Non)Invariance of dynamical quantities for orbit equivalent flows

    Full text link
    We study how dynamical quantities such as Lyapunov exponents, metric entropy, topological pressure, recurrence rates, and dimension-like characteristics change under a time reparameterization of a dynamical system. These quantities are shown to either remain invariant, transform according to a multiplicative factor or transform through a convoluted dependence that may take the form of an integral over the initial local values. We discuss the significance of these results for the apparent non-invariance of chaos in general relativity and explore applications to the synchronization of equilibrium states and the elimination of expansions

    Localization on a quantum graph with a random potential on the edges

    Full text link
    We prove spectral and dynamical localization on a cubic-lattice quantum graph with a random potential. We use multiscale analysis and show how to obtain the necessary estimates in analogy to the well-studied case of random Schroedinger operators.Comment: LaTeX2e, 18 page
    corecore