215 research outputs found

    Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile

    Get PDF
    Discrete numerical simulations are performed to study the evolution of the micro-structure and the response of a granular packing during successive loading-unloading cycles, consisting of quasi-static rotations in the gravity field between opposite inclination angles. We show that internal variables, e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due to the exploration of different metastable configurations. Interestingly, the hysteretic behaviour of the pile strongly depends on the maximal inclination of the cycles, giving evidence of the irreversible modifications of the pile state occurring close to the unjamming transition. More specifically, we show that for cycles with maximal inclination larger than the repose angle, the weak contact network carries the memory of the unjamming transition. These results demonstrate the relevance of a two-phases description -strong and weak contact networks- for a granular system, as soon as it has approached the unjamming transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.

    Towards a taxonomy of process quality characteristics for assessment

    Get PDF
    Previous assessment of process quality have focused on process capability (i.e. the ability of a process to meet its stated goals). This paper proposes a taxonomy of alternative process quality characteristics based on intrinsic and extrinsic quality attributes. The ultimate goal of this taxonomy is to provide a framework to conduct process assessments using different process quality aspects. Such a framework would considerably broaden process quality perspectives beyond the primary measure of process capability. It would also allow practitioners to identify and evaluate relevant quality characteristics for processes based on specific contexts and implications. For the process assessment model developers, it offers a list of process quality characteristics that could be used to develop relevant process measurement frameworks

    Kuksa*: Self-Adaptive Microservices in Automotive Systems

    Full text link
    In pervasive dynamic environments, vehicles connect to other objects to send operational data and receive updates so that vehicular applications can provide services to users on demand. Automotive systems should be self-adaptive, thereby they can make real-time decisions based on changing operating conditions. Emerging modern solutions, such as microservices could improve self-adaptation capabilities and ensure higher levels of quality performance in many domains. We employed a real-world automotive platform called Eclipse Kuksa to propose a framework based on microservices architecture to enhance the self-adaptation capabilities of automotive systems for runtime data analysis. To evaluate the designed solution, we conducted an experiment in an automotive laboratory setting where our solution was implemented as a microservice-based adaptation engine and integrated with other Eclipse Kuksa components. The results of our study indicate the importance of design trade-offs for quality requirements' satisfaction levels of each microservices and the whole system for the optimal performance of an adaptive system at runtime

    Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects

    Get PDF
    BACKGROUND: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE: Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue

    Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone

    Get PDF
    Cytosolic HSP90 requires multiple cochaperones in folding client proteins. However, the function of gp96 (HSP90b1, grp94), an HSP90 paralogue in the endoplasmic reticulum (ER), is believed to be independent of cochaperones. Here, we demonstrate that gp96 chaperones multiple Toll-like receptors (TLRs), but not TLR3, in a manner that is dependent on another ER luminal protein, CNPY3. gp96 directly interacts with CNPY3, and the complex dissociates in the presence of adenosine triphosphate (ATP). Genetic disruption of gp96–CNPY3 interaction completely abolishes their TLR chaperone function. Moreover, we demonstrate that TLR9 forms a multimolecular complex with gp96 and CNPY3, and the binding of TLR9 to either molecule requires the presence of the other. We suggest that CNPY3 interacts with the ATP-sensitive conformation of gp96 to promote substrate loading. Our study has thus established CNPY3 as a TLR-specific cochaperone for gp96

    Regulatory Response to Carbon Starvation in Caulobacter crescentus

    Get PDF
    Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells

    The Endoplasmic Reticulum Chaperone Protein GRP94 Is Required for Maintaining Hematopoietic Stem Cell Interactions with the Adult Bone Marrow Niche

    Get PDF
    Hematopoietic stem cell (HSC) homeostasis in the adult bone marrow (BM) is regulated by both intrinsic gene expression products and interactions with extrinsic factors in the HSC niche. GRP94, an endoplasmic reticulum chaperone, has been reported to be essential for the expression of specific integrins and to selectively regulate early T and B lymphopoiesis. In GRP94 deficient BM chimeras, multipotent hematopoietic progenitors persisted and even increased, however, the mechanism is not well understood. Here we employed a conditional knockout (KO) strategy to acutely eliminate GRP94 in the hematopoietic system. We observed an increase in HSCs and granulocyte-monocyte progenitors in the Grp94 KO BM, correlating with an increased number of colony forming units. Cell cycle analysis revealed that a loss of quiescence and an increase in proliferation led to an increase in Grp94 KO HSCs. This expansion of the HSC pool can be attributed to the impaired interaction of HSCs with the niche, evidenced by enhanced HSC mobilization and severely compromised homing and lodging ability of primitive hematopoietic cells. Transplanting wild-type (WT) hematopoietic cells into a GRP94 null microenvironment yielded a normal hematology profile and comparable numbers of HSCs as compared to WT control, suggesting that GRP94 in HSCs, but not niche cells, is required for maintaining HSC homeostasis. Investigating this, we further determined that there was a near complete loss of integrin α4 expression on the cell surface of Grp94 KO HSCs, which showed impaired binding with fibronectin, an extracellular matrix molecule known to play a role in mediating HSC-niche interactions. Furthermore, the Grp94 KO mice displayed altered myeloid and lymphoid differentiation. Collectively, our studies establish GRP94 as a novel cell intrinsic factor required to maintain the interaction of HSCs with their niche, and thus regulate their physiology
    corecore