202 research outputs found

    CNT Thin Films Based on Epoxy Mixtures: Fabrication, Electrical Characteristics

    Full text link
    Received: 15.03.2024. Revised: 01.04.2024. Accepted: 03.04.2024. Available online: 10.04.2024.An alternative method for producing thin-film transistors was presented.The carrier mobility was 28.87 cm²/V∙s, and the transistor switching frequency was 2.2 MHz.CNT-epoxy mixtures have potential for thin-film device production, but require improved dispersion and film deposition methods.The simple scaling of silicon transistors no longer ensures the advantages of high energy efficiency, driving research into nanotechnologies beyond silicon. Specifically, digital circuits based on carbon nanotube (CNT) fieldeffect transistors promise significant advantages in energy efficiency. However, the inability to perfectly control internal nanoscale defects and the variability of carbon nanotubes hinder the realization of very largescale integrated systems. In this study, we investigated a novel method for fabricating transistors based on carbon nanotubes (CNTs) using epoxy mixtures, obtained the electrical properties of the transistors, and compared their microstructure and composition via the scanning electron microscopy. The carrier mobility on epoxy-based transistors was 28.87 cm²/V∙s, and the transistor switching frequency was 2.2 MHz. The samples exhibited electrical and physical stability over an extended period of time. The use of carbon nanotubes in epoxy resin as a conducting layer for transistors opens significant prospects in the field of electronics. The CNT-epoxy mixture technology allows for more flexible and rapid fabrication of thin-film transistors compared to classical methods. However, it is not appropriate to speak of a complete replacement; in this study, we present an alternative method for producing thin-film transistors, which may be of interest for specific purposes.The research was financially supported by a state assignment (scientific code FZWU-2023-0002)

    Spin exchange between charged paramagnetic particles in dilute solutions

    Get PDF
    © Springer-Verlag Wien 2014. Kinetic equations for the spin density matrix which take into account binary collisions and a method of calculating the spin exchange effective radius have been generalized to the case of dilute solutions of charged paramagnetic particles. The effective radius of the spin exchange and rate constant of the bimolecular spin exchange between charged paramagnetic particles in solutions have been calculated numerically. Calculations have been performed under the assumption that the exchange interaction is isotropic and decays exponentially with the increase in the distance between radicals, and the solution has a given dielectric permittivity and Debye screening radius. Dependences of the spin exchange rate constant on the mutual diffusion coefficient, exchange and electrostatic interactions parameters have been found numerically. The theory has been applied to experimental results taken from the literature. The rate constant of the spin exchange between radicals of like charge found from the experiment and calculated within the developed theory are in good qualitative agreement

    Experimental Observation of the Inverse Proximity Effect in Superconductor/Ferromagnet Layered Structures

    Full text link
    We have studied the nuclear magnetic resonance (NMR) of 51V nuclei in the superconductor/ferromagnet thin film heterostructures Ni/V/Ni and Pd{1-x}Fe{x}/V/Pd{1-x}Fe{x} in the normaland superconducting state. Whereas the position and shape of the NMR line in the normal state for the trilayers is identical to that observed in a single V-layer, in the superconducting state the line shape definitely changes, developing a systematic distortion of the high-field wing of the resonance line. We consider this as the first experimental evidence for the penetration of ferromagnetism into the superconducting layer, a phenomenon which has been theoretically predicted recently and dubbed the inverse proximity effect.Comment: about 5 pages, 3 figures, 1 tabl

    Observation of the "Inverse" spin valve effect in a Ni/V/Ni trilayer system

    Get PDF
    An experimental study of magnetic and superconducting properties of a trilayer Ni/V/Ni thin film system grown on single-crystalline MgO(001) substrate is reported. The field dependence of the superconducting transition temperature T c for samples comprising Ni layers with similar values of the coercive field H c reveals no anomalies. However, in samples with different thicknesses of the nickel layers the difference in H c amounts up to ΔH c ~ 1.8 kOe, thus enabling to manipulate the relative orientations of the layers' magnetization by an external magnetic field. Surprisingly, for these samples the T c for the parallel orientation of the magnetizations of the Ni layers is higher, in a certain magnetic field range, than for the antiparallel one, at odds with theoretical predictions. Possible reasons of this contradiction are discussed. © Pleiades Publishing, Ltd., 2009

    Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond

    Full text link
    We perform a detailed theoretical-experimental study of the dynamical decoupling (DD) of the nitrogen-vacancy (NV) center in diamond. We investigate the DD sequences applied to suppress the dephasing of the electron spin of the NV center induced by the coupling to a spin bath composed of the substitutional nitrogen atoms. The decoupling efficiency of various DD schemes is studied, including both periodic and periodic pulse sequences. For ideal control pulses, we find that the DD protocols with the Carr-Purcell-Meiboom-Gill (CPMG) timing of the pulses provides best performance. We show that, as the number of control pulses increases, the decoupling fidelity scaling differs qualitatively from the predictions of the Magnus expansion, and explain the origin of this difference. In particular, more advanced symmetrized or concatenated protocols do not improve the DD performance. Next, we investigate the impact of the systematic instrumental pulse errors in different periodic and aperiodic pulse sequences. The DD protocols with the single-axis control do not preserve all spin components in the presence of the pulse errors, and the two-axis control is needed. We demonstrate that the two-axis control sequence with the CPMG timing is very robust with respect to the pulse errors. The impact of the pulse errors can be diminished further by symmetrizing this protocol. For all protocols studied here, we present a detailed account of the pulse error parameters which make strongest impact on the DD performance. In conclusion, we give specific recommendations about choosing the decoupling protocol for the system under investigation.Comment: 16 pages, 11 figure

    Electron spin as a spectrometer of nuclear spin noise and other fluctuations

    Full text link
    This chapter describes the relationship between low frequency noise and coherence decay of localized spins in semiconductors. Section 2 establishes a direct relationship between an arbitrary noise spectral function and spin coherence as measured by a number of pulse spin resonance sequences. Section 3 describes the electron-nuclear spin Hamiltonian, including isotropic and anisotropic hyperfine interactions, inter-nuclear dipolar interactions, and the effective Hamiltonian for nuclear-nuclear coupling mediated by the electron spin hyperfine interaction. Section 4 describes a microscopic calculation of the nuclear spin noise spectrum arising due to nuclear spin dipolar flip-flops with quasiparticle broadening included. Section 5 compares our explicit numerical results to electron spin echo decay experiments for phosphorus doped silicon in natural and nuclear spin enriched samples.Comment: Book chapter in "Electron spin resonance and related phenomena in low dimensional structures", edited by Marco Fanciulli. To be published by Springer-Verlag in the TAP series. 35 pages, 9 figure

    Electron Spin-Relaxation Times of Phosphorus Donors in Silicon

    Full text link
    Pulsed electron paramagnetic resonance measurements of donor electron spins in natural phosphorus-doped silicon (Si:P) and isotopically-purified 28Si:P show a strongly temperature-dependent longitudinal relaxation time, T1, due to an Orbach process with DeltaE = 126 K. The 2-pulse echo decay is exponential in 28Si:P, with the transverse relaxation (decoherence) time, T2, controlled by the Orbach process above ~12 K and by instantaneous diffusion at lower temperatures. Spin echo experiments with varying pulse turning angles show that the intrinsic T2 of an isolated spin in 28Si:P is ~60 ms at 7 K.Comment: Submitted to PRL on 02.28.200

    Modulation of Hydrogen Peroxide Production in Cellular Systems by Low Level Magnetic Fields

    Get PDF
    Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, suggesting that ROS might be involved in the development of these cells. However, recent studies suggest that inducing an excess of ROS in cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumors frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially modulate the development of these cells by controlling their ROS production. Low levels of ROS are also important for the development and survival of normal cells. In this manuscript, we present data on the influence of the suppression of the Earth's magnetic field (low level magnetic fields or LLF) which magnitudes range from 0.2 µT to 2 µT on the modulation of hydrogen peroxide (H2O2) in human fibrosarcoma cancer cell line HT1080, pancreatic AsPC-1 cancer cell line, and bovine pulmonary artery endothelial cells (PAEC) exposed to geomagnetic field (control; 45 µT–60 µT). Reduction of the Earth's magnetic field suppressed H2O2 production in cancer cells and PAEC. The addition of catalase and superoxide dismutase (SOD) mimetic MnTBAP inhibited the magnetic field effect. Modulating ROS production by magnetic fields may open new venues of biomedical research and therapeutic strategies

    ДЕВОН-КАМЕННОУГОЛЬНЫЙ МАГМАТИЗМ И ОРУДЕНЕНИЕ ЮЖНО-УРАЛЬСКОЙ АККРЕЦИОННО-КОЛЛИЗИОННОЙ СИСТЕМЫ

    Get PDF
    The oceanic stage in the history of the South Urals completed in the Ordovician – Early Silurian. The Ordovician through Devonian events in the region included the formation of an island arc in the East Ural zone from the Middle Ordovician to Silurian; westward motion of the subduction zone in the Late Silurian – Early Devonian and the origin of a trench along the Main Ural Fault and the Uraltau Uplift; volcanic eruptions and intrusions in the Magnitogorsk island arc system in the Devonian. The Middle-Late Paleozoic geodynamic evolution of uralides and altaides consisted in successive alternation of subduction and collisional settings at the continent-ocean transition. The greatest portion of volcanism in the major Magnitogorsk zone was associated with subduction and correlated in age and patterns of massive sulfide mineralization (VMS) with Early – Middle Devonian ore-forming events in Rudny Altai. Within-plate volcanism at the onset of volcanic cycles records the Early (D1e2) and Middle (D2ef2) Devonian slab break off. The volcanic cycles produced, respectively, the Buribay and Upper Tanalyk complexes with VMS mineralization in the Late Emsian; the Karamalytash complex and its age equivalents in the Late Eifelian – Early Givetian, as well as the lower Ulutau Formation in the Givetian. Slab break off in the Late Devonian – Early Carboniferous obstructed the Magnitogorsk island arc and supported asthenospheric diapirism. A new subduction zone dipping westward and the Aleksandrovka island arc formed in the Late Devonian – Early Carboniferous. The Early Carboniferous collision and another event of obstructed subduction led to a transform margin setting corresponding to postcollisional relative sliding of plates that produced another slab tear. Postcollisional magmatism appears as alkaline gabbro-granitic intrusives with related rich Ti-magnetite mineralization (C1). Transform faulting persisted in the Middle Carboniferous through Permian, when the continent of Eurasia completed its consolidation. The respective metallogenic events included formation of Cu-Ni picritic dolerites (C2–3), as well as large-scale gold and Mo-W deposits in granites (P1–2).Завершение океанической стадии на Южном Урале произошло в ордовик – раннесилурийское время. В среднем ордовике в Восточно-Уральской зоне начала формироваться среднеордовикско-силурийская островная дуга. В позднем силуре – раннем девоне произошел перескок зоны субдукции на запад, формирование глубоководного желоба в зоне Главного Уральского разлома – Уралтауского антиклинория и началось образование вулкано-интрузивных формаций Магнитогорской островодужной системы (D1–D3). В среднепозднепалеозойской геодинамической эволюции уралид и алтаид произошло последовательное чередование субдукционных и трансформно-коллизионных обстановок в зоне перехода континент – океан. На Южном Урале с субдукционной обстановкой связан главный объем вулканических ассоциаций Магнитогорской мегазоны. В раннем (D1e2) и среднем (D2ef2) девоне произошли разрывы слэба, фиксирующиеся проявлениями внутриплитного вулканизма, приуроченного к начальным этапам раннедевонского позднеэмсского и позднеэйфельско-раннеживетского колчеданоносных вулканических циклов. В позднем девоне – раннем карбоне произошла блокировка Магнитогорской островной дуги с разрывом слэба, и, как следствие, – главный этап астеносферного диапиризма. На рубеже позднего девона – раннего карбона сформировалась новая зона субдукции западного падения и возникла Александровская редуцированная островная дуга. Раннекаменноугольная коллизия и повторная блокировка субдукционной зоны привели к трансформной обстановке, отвечавшей постколлизионному скольжению литосферных плит, и вновь – к появлению астеносферного окна («slab-tear»). В этой обстановке были сформированы габбро-гранитные интрузивы повышенной щелочности и связанные с ними Ti-Mgt месторождения мирового класса (С1). Трансформная геодинамическая обстановка оставалась ведущей на протяжении среднего карбона – перми, когда произошла окончательная консолидация Евразийского континента

    Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs

    Get PDF
    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor
    corecore