16,194 research outputs found
Angular Momentum of the BTZ Black Hole in the Teleparallel Geometry
We carry out the Hamiltonian formulation of the three- dimensional
gravitational teleparallelism without imposing the time gauge condition, by
rigorously performing the Legendre transform. Definition of the gravitational
angular momentum arises by suitably interpreting the integral form of the
constraint equation Gama^ik=0 as an angular momentum equation. The
gravitational angular momentum is evaluated for the gravitational field of a
rotating BTZ black hole.Comment: 17 pages, no figures, v2: some misprints corrected, Ref.s added, Eq.s
revised, submitted to General Relativity and Gravitatio
Magnetic exchange mechanism for electronic gap opening in graphene
We show within a local self-consistent mean-field treatment that a random
distribution of magnetic adatoms can open a robust gap in the electronic
spectrum of graphene. The electronic gap results from the interplay between the
nature of the graphene sublattice structure and the exchange interaction
between adatoms.The size of the gap depends on the strength of the exchange
interaction between carriers and localized spins and can be controlled by both
temperature and external magnetic field. Furthermore, we show that an external
magnetic field creates an imbalance of spin-up and spin-down carriers at the
Fermi level, making doped graphene suitable for spin injection and other
spintronic applications.Comment: 5 pages, 5 figure
Particle Creation by a Moving Boundary with Robin Boundary Condition
We consider a massless scalar field in 1+1 dimensions satisfying a Robin
boundary condition (BC) at a non-relativistic moving boundary. We derive a
Bogoliubov transformation between input and output bosonic field operators,
which allows us to calculate the spectral distribution of created particles.
The cases of Dirichlet and Neumann BC may be obtained from our result as
limiting cases. These two limits yield the same spectrum, which turns out to be
an upper bound for the spectra derived for Robin BC. We show that the particle
emission effect can be considerably reduced (with respect to the
Dirichlet/Neumann case) by selecting a particular value for the oscillation
frequency of the boundary position
Coulomb Interactions and Ferromagnetism in Pure and Doped Graphene
We study the presence of ferromagnetism in the phase diagram of the
two-dimensional honeycomb lattice close to half-filling (graphene) as a
function of the strength of the Coulomb interaction and doping. We show that
exchange interactions between Dirac fermions can stabilize a ferromagnetic
phase at low doping when the coupling is sufficiently large. In clean systems,
the zero temperature phase diagram shows both first order and second order
transition lines and two distinct ferromagnetic phases: one phase with only one
type of carriers (either electrons or holes) and another with two types of
carriers (electrons and holes). Using the coherent phase approximation (CPA) we
argue that disorder further stabilizes the ferromagnetic phase.Comment: 10 pages; published versio
- …
