874 research outputs found
End wall flows in rotors and stators of a single stage compressor
A computer code for solving the parabolized Navier-Stokes equations for internal flows was developed. Oscillations that develop in the calculation procedure are discussed. The measurements made in the hub and annulus wall boundary layers are summarized. The flow in the hub wall boundary layer, starting ahead of the inlet guide vanes to the inlet of the rotor is traced
Estimation of time delay by coherence analysis
Using coherence analysis (which is an extensively used method to study the
correlations in frequency domain, between two simultaneously measured signals)
we estimate the time delay between two signals. This method is suitable for
time delay estimation of narrow band coherence signals for which the
conventional methods cannot be reliably applied. We show by analysing coupled
R\"ossler attractors with a known delay, that the method yields satisfactory
results. Then, we apply this method to human pathologic tremor. The delay
between simultaneously measured traces of Electroencephalogram (EEG) and
Electromyogram (EMG) data of subjects with essential hand tremor is calculated.
We find that there is a delay of 11-27 milli-seconds () between the tremor
correlated parts (cortex) of the brain (EEG) and the trembling hand (EMG) which
is in agreement with the experimentally observed delay value of 15 for the
cortico-muscular conduction time. By surrogate analysis we calculate error-bars
of the estimated delay.Comment: 21 pages, 8 figures, elstart.cls file included. Accepted for
publication in Physica
On the evidence of deterministic chaos in ECG: surrogate and predictability analysis
The question whether the human cardiac system is chaotic or not has been an open one. Recent results in chaos theory have shown that the usual methods, such as saturation of correlation dimension D2 or the existence of positive Lyapunov exponent, alone do not provide sufficient evidence to confirm the presence of deterministic chaos in an experimental system. The results of surrogate data analysis together with the short-term prediction analysis can be used to check whether a given time series is consistent with the hypothesis of deterministic chaos. In this work nonlinear dynamical tools such as surrogate data analysis, short-term prediction, saturation of D2 and positive Lyapunov exponent have been applied to measured ECG data for several normal and pathological cases. The pathology presently studied are PVC (Premature Ventricular Contraction), VTA (Ventricular Tachy Arrhythmia), AV (Atrio-Ventricular) block and VF (Ventricular Fibrillation). While these results do not prove that ECG time series is definitely chaotic, they are found to be consistent with the hypothesis of chaotic dynamics
Two-Dimensional Quantum Model of a Nanotransistor
A mathematical model, and software to implement the model, have been devised to enable numerical simulation of the transport of electric charge in, and the resulting electrical performance characteristics of, a nanotransistor [in particular, a metal oxide/semiconductor field-effect transistor (MOSFET) having a channel length of the order of tens of nanometers] in which the overall device geometry, including the doping profiles and the injection of charge from the source, gate, and drain contacts, are approximated as being two-dimensional. The model and software constitute a computational framework for quantitatively exploring such device-physics issues as those of source-drain and gate leakage currents, drain-induced barrier lowering, and threshold voltage shift due to quantization. The model and software can also be used as means of studying the accuracy of quantum corrections to other semiclassical models
Two Dimensional Quantum Mechanical Modeling of Nanotransistors
Quantization in the inversion layer and phase coherent transport are
anticipated to have significant impact on device performance in 'ballistic'
nanoscale transistors. While the role of some quantum effects have been
analyzed qualitatively using simple one dimensional ballistic models, two
dimensional (2D) quantum mechanical simulation is important for quantitative
results. In this paper, we present a framework for 2D quantum mechanical
simulation of a nanotransistor / Metal Oxide Field Effect Transistor (MOSFET).
This framework consists of the non equilibrium Green's function equations
solved self-consistently with Poisson's equation. Solution of this set of
equations is computationally intensive. An efficient algorithm to calculate the
quantum mechanical 2D electron density has been developed. The method presented
is comprehensive in that treatment includes the three open boundary conditions,
where the narrow channel region opens into physically broad source, drain and
gate regions. Results are presented for (i) drain current versus drain and gate
voltages, (ii) comparison to results from Medici, and (iii) gate tunneling
current, using 2D potential profiles. Methods to reduce the gate leakage
current are also discussed based on simulation results.Comment: 12 figures. Journal of Applied Physics (to appear
A framework for the systematic implementation of Green-Lean and sustainability in SMEs
Evidence suggests that smaller organisations find the implementation of combined operations- and environmental Sustainability improvement initiatives such as Green-Lean and Sustainability (GLS) challenging. This paper, therefore, develops a framework for the systematic implementation of Green-Lean and Sustainability in small and medium-sized enterprises (SMEs) to achieve long-term improvement of environmental, social and economic processes and performance. A literature assessment of theories, frameworks, and concepts was employed in the study to better comprehend the difficulties confronting the modern business world. In addition, the research employed expert perspectives from the lean, green-lean, and sustainability fields to propose, develop, test, and validate a framework for addressing business concerns. The research uncovers considerable implementation problems, such as employee motivation and integration, responsibilities, and measurements. It also underlines the success factors for the implementation process, such as management, firm- goals and strategy, reviews and audits, vision, and guidance by lean, green and sustainability frameworks. The novelty in this research lies in the approach where Green-Lean and Sustainability are combined and applied in an SME context. The presented framework offers the potential to be implemented in SMEs that operate in different sectors and contexts and are affected by different environmental and social considerations
Understanding edge-connectivity in the Internet through core-decomposition
Internet is a complex network composed by several networks: the Autonomous
Systems, each one designed to transport information efficiently. Routing
protocols aim to find paths between nodes whenever it is possible (i.e., the
network is not partitioned), or to find paths verifying specific constraints
(e.g., a certain QoS is required). As connectivity is a measure related to both
of them (partitions and selected paths) this work provides a formal lower bound
to it based on core-decomposition, under certain conditions, and low complexity
algorithms to find it. We apply them to analyze maps obtained from the
prominent Internet mapping projects, using the LaNet-vi open-source software
for its visualization
- …