20,572 research outputs found

    X-raying the Winds of Luminous Active Galaxies

    Full text link
    We briefly describe some recent observational results, mainly at X-ray wavelengths, on the winds of luminous active galactic nuclei (AGNs). These winds likely play a significant role in galaxy feedback. Topics covered include (1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL) and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3) Evidence for relativistic iron K BALs in the X-ray spectra of a few bright quasars. We also mention some key outstanding problems and prospects for future advances; e.g., with the International X-ray Observatory (IXO).Comment: 7 pages, 3 figures, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison, Wisconsi

    A Chandra Survey of the X-ray Properties of Broad Absorption Line Radio-Loud Quasars

    Full text link
    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from SDSS/FIRST data and possessing a wide range of radio and CIV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. We also include in our sample 9 additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshot and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both disk-corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.Comment: 48 pages, 5 tables, 14 figures, accepted by Ap

    Critical State in Thin Anisotropic Superconductors of Arbitrary Shape

    Full text link
    A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known. This finding thus enables one to study the critical states in realistic samples of high-Tc superconductors with various types of anisotropic flux-line pinning. As examples, we investigate the critical states of long strips and rectangular platelets of high-Tc superconductors with pinning either by the ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex

    Analytic Solution for the Critical State in Superconducting Elliptic Films

    Full text link
    A thin superconductor platelet with elliptic shape in a perpendicular magnetic field is considered. Using a method originally applied to circular disks, we obtain an approximate analytic solution for the two-dimensional critical state of this ellipse. In the limits of the circular disk and the long strip this solution is exact, i.e. the current density is constant in the region penetrated by flux. For ellipses with arbitrary axis ratio the obtained current density is constant to typically 0.001, and the magnetic moment deviates by less than 0.001 from the exact value. This analytic solution is thus very accurate. In increasing applied magnetic field, the penetrating flux fronts are approximately concentric ellipses whose axis ratio b/a < 1 decreases and shrinks to zero when the flux front reaches the center, the long axis staying finite in the fully penetrated state. Analytic expressions for these axes, the sheet current, the magnetic moment, and the perpendicular magnetic field are presented and discussed. This solution applies also to superconductors with anisotropic critical current if the anisotropy has a particular, rather realistic form.Comment: Revtex file and 13 postscript figures, gives 10 pages of text with figures built i

    Current density inhomogeneity throughout the thickness of superconducting films and its effect on their irreversible magnetic properties

    Full text link
    We calculate the distribution of the current density jj in superconducting films along the direction of an external field applied perpendicular to the film plane. Our analysis reveals that in the presence of bulk pinning jj is inhomogeneous on a length scale of order the inter vortex distance. This inhomogeneity is significantly enhanced in the presence of surface pinning. We introduce new critical state model, which takes into account the current density variations throughout the film thickness, and show how these variations give rise to the experimentally observed thickness dependence of % j and magnetic relaxation rate.Comment: RevTex, 9 PS figures. To appear in Phys. Rev.

    Broad Absorption Line Variability in Radio-Loud Quasars

    Full text link
    We investigate C IV broad absorption line (BAL) variability within a sample of 46 radio-loud quasars (RLQs), selected from SDSS/FIRST data to include both core-dominated (39) and lobe-dominated (7) objects. The sample consists primarily of high-ionization BAL quasars, and a substantial fraction have large BAL velocities or equivalent widths; their radio luminosities and radio-loudness values span ~2.5 orders of magnitude. We have obtained 34 new Hobby-Eberly Telescope (HET) spectra of 28 BAL RLQs to compare to earlier SDSS data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs, probing rest-frame timescales of ~80-6000 d (median 500 d). In general, only modest changes in the depths of segments of absorption troughs are observed, akin to those seen in prior studies of BAL RQQs. Also similar to previous findings for RQQs, the RLQs studied here are more likely to display BAL variability on longer rest-frame timescales. However, typical values of |Delta_EW| and |Delta_EW|/ are about 40+/-20% lower for BAL RLQs when compared with those of a timescale-matched sample of BAL RQQs. Optical continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for both RLQs and RQQs, continuum variability tends to be stronger on longer timescales. BAL variability in RLQs does not obviously depend upon their radio luminosities or radio-loudness values, but we do find tentative evidence for greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL variability within more edge-on (lobe-dominated) RLQs supports some geometrical dependence to the outflow structure.Comment: 27 pages, 16 figures, 6 tables, accepted to MNRAS, full Appendix A at http://www.macalester.edu/~bmille13/balrlqs.htm

    Theory of Type-II Superconductors with Finite London Penetration Depth

    Full text link
    Previous continuum theory of type-II superconductors of various shapes with and without vortex pinning in an applied magnetic field and with transport current, is generalized to account for a finite London penetration depth lambda. This extension is particularly important at low inductions B, where the transition to the Meissner state is now described correctly, and for films with thickness comparable to or smaller than lambda. The finite width of the surface layer with screening currents and the correct dc and ac responses in various geometries follow naturally from an equation of motion for the current density in which the integral kernel now accounts for finite lambda. New geometries considered here are thick and thin strips with applied current, and `washers', i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure

    Thermal one- and two-graviton Green's functions in the temporal gauge

    Get PDF
    The thermal one- and two-graviton Green's function are computed using a temporal gauge. In order to handle the extra poles which are present in the propagator, we employ an ambiguity-free technique in the imaginary-time formalism. For temperatures T high compared with the external momentum, we obtain the leading T^4 as well as the subleading T^2 and log(T) contributions to the graviton self-energy. The gauge fixing independence of the leading T^4 terms as well as the Ward identity relating the self-energy with the one-point function are explicitly verified. We also verify the 't Hooft identities for the subleading T^2 terms and show that the logarithmic part has the same structure as the residue of the ultraviolet pole of the zero temperature graviton self-energy. We explicitly compute the extra terms generated by the prescription poles and verify that they do not change the behavior of the leading and sub-leading contributions from the hard thermal loop region. We discuss the modification of the solutions of the dispersion relations in the graviton plasma induced by the subleading T^2 contributions.Comment: 17 pages, 5 figures. Revised version to be published in Phys. Rev.
    • …
    corecore