The thermal one- and two-graviton Green's function are computed using a
temporal gauge. In order to handle the extra poles which are present in the
propagator, we employ an ambiguity-free technique in the imaginary-time
formalism. For temperatures T high compared with the external momentum, we
obtain the leading T^4 as well as the subleading T^2 and log(T) contributions
to the graviton self-energy. The gauge fixing independence of the leading T^4
terms as well as the Ward identity relating the self-energy with the one-point
function are explicitly verified. We also verify the 't Hooft identities for
the subleading T^2 terms and show that the logarithmic part has the same
structure as the residue of the ultraviolet pole of the zero temperature
graviton self-energy. We explicitly compute the extra terms generated by the
prescription poles and verify that they do not change the behavior of the
leading and sub-leading contributions from the hard thermal loop region. We
discuss the modification of the solutions of the dispersion relations in the
graviton plasma induced by the subleading T^2 contributions.Comment: 17 pages, 5 figures. Revised version to be published in Phys. Rev.