1,657 research outputs found

    Antioxidant and antihemolytic activities of methanol extract of Hyssopus angustifolius

    Get PDF
    This study was designed to evaluate antioxidant and antihemolytic activities of Hyssopus angustifolius flower, stem and leaf methanol extracts by employing various in vitro assays. The leaf extract showed the best activity in DPPH (63.2 ± 2.3 μg mL-1) and H2O2  (55.6 ± 2.6 μg mL-1) models compared to the other extracts. However, flower extract exhibited the highest Fe2+ chelating activity (131.4 ± 4.4 μg mL-1). The extracts exhibited good antioxidant activity in linoleic acid peroxidation and reducing power assays, but were not comparable to vitamin C. The stem (23.58 ± 0.7 μg mL-1) and leaf (26.21 ± 1 μg mL-1) extracts showed highest level of antihemolytic activity than the flower extract

    Factors influencing project delay : a case study of the Vale Malaysia Minerals Project (VMMP)

    Get PDF
    Delays are one of the biggest problems faced by the construction industry. The delays in construction projects have significant financial and social impact to parties involved in the projects. The main objective of this study is to explore the causes of delay in the Vale Malaysia Minerals Project (VMMP) in Lumut, Perak. This study was conducted by using a qualitative approach. A series of face to face interviews were conducted with an expert from construction organization and VMMP staff. Responses were analysed qualitatively using content analysis and a comprehensive interpretation was developed. The results revealed that several factors that contribute to the delay in VMMP completion, i.e. communication, delayed in material delivery, and poor management on site, etc. Time and cost overrun were the common effects of delays in construction project. The findings of this study will help the project manager or the client to take necessary measures and to use of supply chain management to avoid delays of project completion in a construction project

    Abelian Sandpile Model on the Honeycomb Lattice

    Full text link
    We check the universality properties of the two-dimensional Abelian sandpile model by computing some of its properties on the honeycomb lattice. Exact expressions for unit height correlation functions in presence of boundaries and for different boundary conditions are derived. Also, we study the statistics of the boundaries of avalanche waves by using the theory of SLE and suggest that these curves are conformally invariant and described by SLE2.Comment: 24 pages, 5 figure

    Evaluation of known and novel inhibitors of Orai1-mediated store operated Ca2+ entry in MDA-MB-231 breast cancer cells using a Fluorescence Imaging Plate Reader assay

    Get PDF
    The Orai1 Ca2+ permeable ion channel is an important component of store operated Ca2+ entry (SOCE) in cells. It's over-expression in basal molecular subtype breast cancers has been linked with poor prognosis, making it a potential target for drug development. We pharmacologically characterised a number of reported inhibitors of SOCE in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader (FLIPR) assay, and show that the rank order of their potencies in this assay is the same as those reported in a wide range of published assays. The assay was also used in a screening project seeking novel inhibitors. Following a broad literature survey of classes of calcium channel inhibitors we used simplified ligand structures to query the ZINC on-line database, and following two iterations of refinement selected a novel Orai1-selective dichlorophenyltriazole hit compound. Analogues of this were synthesized and evaluated in the FLIPR assay to develop structure-activity relationships (SAR) for the three domains of the hit; triazole (head), dichlorophenyl (body) and substituted phenyl (tail). For this series, the results suggested the need for a lipophilic tail domain and an out-of-plane twist between the body and tail domains. (C) 2016 Elsevier Ltd. All rights reserved

    Generating GHZ state in 2m-qubit spin network

    Full text link
    We consider a pure 2m-qubit initial state to evolve under a particular quantum me- chanical spin Hamiltonian, which can be written in terms of the adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques such as spectral dis- tribution and stratification associated with the graphs, employed in [1, 2], a maximally entangled GHZ state is generated between the antipodes of the network. In fact, an explicit formula is given for the suitable coupling strengths of the hamiltonian, so that a maximally entangled state can be generated between antipodes of the network. By using some known multipartite entanglement measures, the amount of the entanglement of the final evolved state is calculated, and finally two examples of four qubit and six qubit states are considered in details.Comment: 22 page

    Nucleon-Nucleon Correlations and Two-Nucleon Currents in Exclusive (e,eNNe,e'NN) Reactions

    Get PDF
    The contributions of short-range nucleon-nucleon (NN) correlations, various meson exchange current (MEC) terms and the influence of Δ\Delta isobar excitations (isobaric currents, IC) on exclusive two-nucleon knockout reactions induced by electron scattering are investigated. The nuclear structure functions are evaluated for nuclear matter. Realistic NN interactions derived in the framework of One-Boson-Exchange model are employed to evaluate the effects of correlations and MEC in a consistent way. The correlations correlations are determined by solving the Bethe-Goldstone equation. This yields significant contributions to the structure functions W_L and W_T of the (e,e'pn) and (e,e'pp) reactions. These contributions compete with MEC corrections originating from the π\pi and ρ\rho exchange terms of the same interaction. Special attention is paid to the so-called 'super parallel' kinematics at momentum transfers which can be measured e.g. at MAMI in Mainz.Comment: 14 pages, 8 figures include

    One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca

    Get PDF
    The one body density matrix, momentum distribution, natural orbits and quasi hole states of 16O and 40Ca are analyzed in the framework of the correlated basis function theory using state dependent correlations with central and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by means of the variational principle and the realistic Argonne v8' two-nucleon and Urbana IX three-nucleon interactions. The correlated momentum distributions are in good agreement with the available variational Monte Carlo results and show the well known enhancement at large momentum values with respect to the independent particle model. Diagonalization of the density matrix provides the natural orbits and their occupation numbers. Correlations deplete the occupation number of the first natural orbitals by more than 10%. The first following ones result instead occupied by a few percent. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent (~1-3%) and an additional ~8-12% depletion is provided by tensor correlations. It is confirmed that short range correlations do not explain the spectroscopic factors extracted from (e,e'p) experiments. 2h-1p perturbative corrections in the correlated basis are expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.
    corecore