76 research outputs found
Diameter-dependent wetting of tungsten disulfide nanotubes
The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem
Asymmetric Misfit Nanotubes: Chemical Affinity Outwits the Entropy at High-Temperature Solid-State Reactions
Asymmetric two-dimensional (2D) structures (often named Janus), like SeMoS and their nanotubes, have tremendous scope in material chemistry, nanophotonics, and nanoelectronics due to a lack of inversion symmetry and time-reversal symmetry. The synthesis of these structures is fundamentally difficult owing to the entropy-driven randomized distribution of chalcogens. Indeed, no Janus nanotubes were experimentally prepared, so far. Serendipitously, a family of asymmetric misfit layer superstructures (tubes and flakes), including LaX-TaX2 (where X = S/Se), were synthesized by high-temperature chemical vapor transport reaction in which the Se binds exclusively to the Ta atoms and La binds to S atoms rather than the anticipated random distribution.With increasing Se concentration, the LaS-TaX2 misfit structure gradually transformed into a new LaS-TaSe2-TaSe2 superstructure. No misfit structures were found for xSe = 1. These counterintuitive results shed light on the chemical selectivity and stability of misfit compounds and 2D alloys, in general. The lack of inversion symmetry in these asymmetric compounds induces very large local electrical dipoles. The loss of inversion and time-reversal symmetries in the chiral nanotubes offers intriguing physical observations and applications. © 2021 National Academy of Sciences. All rights reserved.ACKNOWLEDGMENTS. We thank Dr. Iddo Pinkas for the help with the Raman measurements. The support of the Israel Science Foundation (Grant 7130970101), Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, the Perlman Family Foundation, and the Kimmel Center for Nanoscale Science (Grant 43535000350000) are greatly acknowledged. Part of the TEM studies were conducted at the Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, Spain. S.H. and R.A. acknowledge funding by German Research Foundation (Deutsche Forschungsgemeinschaft project He 7675/1-1), by the Spanish Ministerio de Ciencia e Innovacion (PID2019-104739GB-100/AEI/ 10.13039/501100011033), and Government of Aragon (project DGA E13-20R [Fondo Europeo de Desarrollo Regional, European Union]). R.A. gratefully acknowledges the support from the European Union H2020 programs “ESTEEM3” (Grant 823717) and Graphene Flagship (881603)
Line Defects in Molybdenum Disulfide Layers
Layered molecular materials and especially MoS2 are already accepted as
promising candidates for nanoelectronics. In contrast to the bulk material, the
observed electron mobility in single-layer MoS2 is unexpectedly low. Here we
reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion
domains, where the layer changes its direction through a line defect. The line
defects are observed experimentally by atomic resolution TEM. The structures
were modeled and the stability and electronic properties of the defects were
calculated using quantum-mechanical calculations based on the
Density-Functional Tight-Binding method. The results of these calculations
indicate the occurrence of new states within the band gap of the semiconducting
MoS2. The most stable non-stoichiometric defect structures are observed
experimentally, one of which contains metallic Mo-Mo bonds and another one
bridging S atoms
Nanotubes from the Misfit Layered Compound (SmS)1.19TaS2: Atomic Structure, Charge Transfer, and Electrical Properties
Misfit layered compounds (MLCs) MX-TX2, where M, T = metal atoms and X = S, Se, or Te, and their nanotubes are of significant interest due to their rich chemistry and unique quasi-1D structure. In particular, LnX-TX2 (Ln = rare-earth atom) constitute a relatively large family of MLCs, from which nanotubes have been synthesized. The properties of MLCs can be tuned by the chemical and structural interplay between LnX and TX2 sublayers and alloying of each of the Ln, T, and X elements. In order to engineer them to gain desirable performance, a detailed understanding of their complex structure is indispensable. MLC nanotubes are a relative newcomer and offer new opportunities. In particular, like WS2 nanotubes before, the confinement of the free carriers in these quasi-1D nanostructures and their chiral nature offer intriguing physical behavior. High-resolution transmission electron microscopy in conjunction with a focused ion beam are engaged to study SmS-TaS2 nanotubes and their cross-sections at the atomic scale. The atomic resolution images distinctly reveal that Ta is in trigonal prismatic coordination with S atoms in a hexagonal structure. Furthermore, the position of the sulfur atoms in both the SmS and the TaS2 sublattices is revealed. X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and X-ray absorption spectroscopy are carried out. These analyses conclude that charge transfer from the Sm to the Ta atoms leads to filling of the Ta 5dz2 level, which is confirmed by density functional theory (DFT) calculations. Transport measurements show that the nanotubes are semimetallic with resistivities in the range of 10-4 Ω·cm at room temperature, and magnetic susceptibility measurements show a superconducting transition at 4 K. © 2022 The Authors. Published by American Chemical Society.This work was partially supported by the Israel Science Foundation Grant No. 339/18 (Internal Grant No. 120924) (R.T.). The following foundations are acknowledged: Perlman Family Foundation; the Kimmel Center for Nanoscale Science Grant No. 43535000350000; and the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging. CzechNanoLab Project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements and sample fabrication at the CEITEC Nano Research Infrastructure. This work was partially supported by Ceitec Nano+ (CZ.02.01/0.0./.0.0./16_013/0001728 under Program OPVVV) and the Horizon 2020 Research and Innovation Programme under Grant Agreement 810626 (SINNCE). Work at Ames Laboratory was supported by the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, Office of Science of U.S. Department of Energy. Ames Laboratory is operated for the U.S. DOE by Iowa State University of Science and Technology under Contract No. DE-AC02-07CH11358. A part of the work at Buffalo State was supported by the faculty startup fund from the Dean’s Office, School of Arts and Sciences, State University of New York (SUNY), Buffalo State. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities for XAS studies. Parts of this research were carried out at PETRA III, P23 “In-situ and X-ray imaging beamline”
Inorganic fullerenes and nanotubes: Wealth of materials and morphologies
It is already well established today that numerous materials form closed-cage structures, of which carbon fullerenes and nanotubes
are a special case [1]. Inorganic fullerene-like nanoparticles (designated IF) and inorganic nanotubes (INT) have
been produced by different routes and experimental techniques, achieving persistent growth of a variety of materials
and structural wealth within them. The research in this area has focused on synthesizing new IF and INT materials and understanding
their different properties as well as scaling up the synthetic process in order to make it suitable for industrial applications.
In this review, the main synthetic procedures to obtain inorganic fullerene-like nanoparticles and nanotubes will be discussed
alongside with the different mechanisms that affect the morphology of the final product. The main differences between the morphologies
will be presented. Some general considerations relating the properties of the parent compound with the morphology of the product will
be mentioned
Cathodoluminescence and Laser-Induced Fluorescence of Calcium Carbonate: A Review of Screening Methods for Radiocarbon Dating of Ancient Lime Mortars
Accurate radiocarbon (14C) dating of lime mortars requires a thorough mineralogical characterization of binders in order to verify the presence of carbon-bearing contaminants. In the last 20 years, cathodoluminescence (CL) has been widely used for the identification of geologic calcium carbonate (CaCO3) aggregates and unreacted lime lumps within the particle size fraction selected for carbon recovery. These components are major sources of older and younger carbon, respectively, and should be removed to obtain accurate age determinations. More recently, laser-induced fluorescence (LIF) has provided another means of investigating the preservation state and composition of CaCO3 binders. Considered the growing interest of the mortar dating community in the latest advancements of these analytical methods, here we review the principles of CL and LIF of CaCO3, their instrument setup, and their application to the characterization of ancient lime mortars used for 14C dating. In addition, we provide examples of SEM-CL and LIF analyses using high-resolution instrumentation, we discuss current issues and propose future lines of research
- …