1,384 research outputs found

    On the correct continuum limit of the functional-integral representation for the four-slave-boson approach to the Hubbard model: Paramagnetic phase

    Full text link
    The Hubbard model with finite on-site repulsion U is studied via the functional-integral formulation of the four-slave-boson approach by Kotliar and Ruckenstein. It is shown that a correct treatment of the continuum imaginary time limit (which is required by the very definition of the functional integral) modifies the free energy when fluctuation (1/N) corrections beyond mean-field are considered. Our analysis requires us to suitably interpret the Kotliar and Ruckenstein choice for the bosonic hopping operator and to abandon the commonly used normal-ordering prescription, in order to obtain meaningful fluctuation corrections. In this way we recover the exact solution at U=0 not only at the mean-field level but also at the next order in 1/N. In addition, we consider alternative choices for the bosonic hopping operator and test them numerically for a simple two-site model for which the exact solution is readily available for any U. We also discuss how the 1/N expansion can be formally generalized to the four-slave-boson approach, and provide a simplified prescription to obtain the additional terms in the free energy which result at the order 1/N from the correct continuum limit.Comment: Changes: Printing problems (due to non-standard macros) have been removed, 44 page

    Spectral properties of coupled cavity arrays in one dimension

    Full text link
    Spectral properties of coupled cavity arrays in one dimension are investigated by means of the variational cluster approach. Coupled cavity arrays consist of two distinct "particles," namely, photons and atomiclike excitations. Spectral functions are evaluated and discussed for both particle types. In addition, densities of states, momentum distributions and spatial correlation functions are presented. Based on this information, polariton "quasiparticles" are introduced as appropriate, wave vector and filling dependent linear combinations of photon and atomiclike particles. Spectral functions and densities of states are evaluated for the polariton quasiparticles, and the weights of their components are analyzed.Comment: 17 pages, 16 figures, version as publishe

    Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects

    Full text link
    Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.Comment: 7 pages, 6 figures, published versio

    Static overscreening and nonlinear response in the Hubbard Model

    Full text link
    We investigate the static charge response for the Hubbard model. Using the Slave-Boson method in the saddle-point approximation we calculate the charge susceptibility. We find that RPA works quite well close to half-filling, breaking, of course, down close to the Mott transition. Away from half filling RPA is much less reliable: Already for very small values of the Hubbard interaction U, the linear response becomes much more efficient than RPA, eventually leading to overscreening already beyond quite moderate values of U. To understand this behavior we give a simple argument, which implies that the response to an external perturbation at large U should actually be strongly non-linear. This prediction is confirmed by the results of exact diagonalization.Comment: 10 pages, 7 figures, RevTe

    Renormalized SO(5) symmetry in ladders with next-nearest-neighbor hopping

    Full text link
    We study the occurrence of SO(5) symmetry in the low-energy sector of two-chain Hubbard-like systems by analyzing the flow of the running couplings (gg-ology) under renormalization group in the weak-interaction limit. It is shown that SO(5) is asymptotically restored for low energies for rather general parameters of the bare Hamiltonian. This holds also with inclusion of a next-nearest-neighbor hopping which explicitly breaks particle-hole symmetry provided one accounts for a different single-particle weight for the quasiparticles of the two bands of the system. The physical significance of this renormalized SO(5) symmetry is discussed.Comment: Final version: to appear in Phys. Rev. Lett., sched. Mar. 9

    Improving SPIHT-based Compression of Volumetric Medical Data

    Get PDF
    Volumetric medical data (CT,MR) are useful tools for diagnostic investigation however their usage may be made diffcult because of the amount of data to store or because of the duration of communication over a limited capacity channel. In order to code such information sources we present a progressive three dimensional image compression algorithm based on zerotree wavelet coder with arithmetic coding. We make use of a 3D separable biorthogonal wavelet transform and we extend the zerotree SPIHT algorithm to three dimensions. Moreover we propose some improvements to the SPIHT encoder in order to obtain a better rate distortion performance without increasing the computational complexity. Finally we propose an efficient context-based adaptive arithmetic coding which eliminates high order redundancy. The results obtained on progressive coding of a test CT volume are better than those presented in recent similar works both for the mean PSNR on the whole volume and for the PSNR homogeneity between various slices

    Interrelation of Superconducting and Antiferromagnetic Gaps in High-Tc Compounds: a Test Case for a Microscopic Theory

    Full text link
    Recent angle resolved photoemission (ARPES) data, which found evidence for a d-wave-like modulation of the antiferromagnetic gap, suggest an intimate interrelation between the antiferromagnetic insulator and the superconductor with its d-wave gap. This poses a new challenge to microscopic descriptions, which should account for this correlation between, at first sight, very different states of matter. Here, we propose a microscopic mechanism which provides a definite correlation between these two different gap structures: it is shown that a projected SO(5) theory, which aims at unifying antiferromagnetism and d-wave superconductivity via a common symmetry principle while explicitly taking the Mott-Hubbard gap into account, correctly describes the observed gap characteristics. Specifically, it accounts for both the dispersion and the order of magnitude difference between the antiferromagnetic gap modulation and the superconducting gap.Comment: 8 pages, 5 figure

    Semanticizing syntactic patterns in NLP processing using SPARQL-DL queries

    Get PDF
    Some recent works on natural language semantic parsing make use of syntax and semantics together using different combination models. In our work we attempt to use SPARQL-DL as an interface between syntactic information given by the Stanford statistical parser (namely part-of-speech tagged text and typed dependency representation) and semantic information obtained from the FrameNet database. We use SPARQL-DL queries to check the presence of syntactic patterns within a sentence and identify their role as frame elements. The choice of SPARQL-DL is due to its usage as a common reference language for semantic applications and its high expressivity, which let rules to be generalized exploiting the inference capabilities of the underlying reasoner
    • …
    corecore