2,374 research outputs found
NetCDF model output of the entire state of the surface layer, including simulated dFe dyes, of the circum-Antarctic
Dataset: Antarctic dFe model dyesFor a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782848NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1643652, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-164361
Decadal trends in air-sea CO2 exchange in the Ross Sea (Antarctica)
Abstract Highly productive Antarctic shelf systems, like the Ross Sea, play important roles in regional carbon budgets, but the drivers of local variations are poorly quantified. We assess the variability in the Ross Sea carbon cycle using a regional physical‐biogeochemical model. Regionally, total partial pressure of CO2 (pCO2) increases are largely controlled by the biological pump and broadly similar to those in the offshore Southern Ocean. However, this masks substantial local variability within the Ross Sea, where interannual fluctuations in total pCO2 are driven by the biological pump and alkalinity, whereas those for anthropogenic pCO2 are related to physical processes. Overall, the high degree of spatial variability in the Ross Sea carbon cycle causes extremes in aragonite saturation that can be as large as long‐term trends. Therefore, Antarctic shelf polynya systems like the Ross Sea will be strongly affected by local processes in addition to larger‐scale phenomena
Multiproxy records of climate variability for Kamchatka for the past 400 years
International audienceTree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1?3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records
Reaction-diffusion systems with constant diffusivities: conditional symmetries and form-preserving transformations
Q-conditional symmetries (nonclassical symmetries) for a general class of
two-component reaction-diffusion systems with constant diffusivities are
studied. Using the recently introduced notion of Q-conditional symmetries of
the first type (R. Cherniha J. Phys. A: Math. Theor., 2010. vol. 43., 405207),
an exhaustive list of reaction-diffusion systems admitting such symmetry is
derived. The form-preserving transformations for this class of systems are
constructed and it is shown that this list contains only non-equivalent
systems. The obtained symmetries permit to reduce the reaction-diffusion
systems under study to two-dimensional systems of ordinary differential
equations and to find exact solutions. As a non-trivial example, multiparameter
families of exact solutions are explicitly constructed for two nonlinear
reaction-diffusion systems. A possible interpretation to a biologically
motivated model is presented
In situ electrochemical cells to study the oxygen evolution reaction by near ambient pressure x-ray photoelectron spectroscopy
In this contribution, we report the development of in situ electrochemical cells based on proton exchange membranes suitable for studying interfacial structural dynamics of energy materials under operation by near ambient pressure X-ray photoelectron spectroscopy. We will present both the first design of a batch-type two-electrode cell prototype and the improvements attained with a continuous flow three-electrode cell. Examples of both sputtered metal films and carbon-supported metal nanostructures are included demonstrating the high flexibility of the cells to study energy materials. Our immediate focus was on the study of the oxygen evolution reaction, however, the methods described herein can be broadly applied to reactions relevant in energy conversion and storage devices
Are Au nanoparticles on oxygen free supports catalytically active?
Gold nanoparticles Au NPs on oxygen free supports were examined using near ambient pressure X ray photoelectron spectroscopy NAP XPS under CO oxidation conditions, and ex situ using scanning electron microscopy SEM and transmission electron microscopy TEM . Our observations demonstrate that Au NPs supported on carbon materials are inactive, regardless of the preparation method. Ozone O3 treatment of carbon supports leads oxygen functionalization of the supports. When subsequently exposed to a CO feed, CO is oxidized by the functionalized sites of the carbon support via a stoichiometric pathway. Microscopy reveals that the reaction with CO does not change the morphology of the Au NPs. In situ XPS reveals that the O3 treatment gives rise to additional Au 4f and O 1s peaks at binding energies of 85.25 85.6 eV and 529.4 530 eV, respectively, which are assigned to the presence of Au oxide. A surface oxide phase is formed during the activation of Au NPs supported on Au foil by O3 treatment. However, this phase decomposes in vacuum and the remaining low coordinative atoms do not have sufficient catalytic properties to oxidize CO, so the size reduction of Au NPs and or oxidation of Au NPs is not sufficient to activate A
A symmetry classification for a class of (2+1)-nonlinear wave equation
In this paper, a symmetry classification of a -nonlinear wave equation
where is a smooth function on , using
Lie group method, is given. The basic infinitesimal method for calculating
symmetry groups is presented, and used to determine the general symmetry group
of this -nonlinear wave equation
A multi-layer extension of the stochastic heat equation
Motivated by recent developments on solvable directed polymer models, we
define a 'multi-layer' extension of the stochastic heat equation involving
non-intersecting Brownian motions.Comment: v4: substantially extended and revised versio
- …
