250 research outputs found

    Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Get PDF
    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matche

    Scientific Value of Real-Time Global Positioning System Data

    Get PDF
    The Global Positioning System (GPS) is an example of a Global Navigation Satellite System (GNSS) that provides an essential complement to other geophysical networks because of its high precision, sensitivity to the longest‐period bands, ease of deployment, and ability to measure displacement and atmospheric properties over local to global scales. Recent and ongoing technical advances, combined with decreasing equipment and data acquisition costs, portend rapid increases in accessibility of data from expanding global geodetic networks. Scientists and the public are beginning to have access to these high‐rate, continuous data streams and event‐specific information within seconds to minutes rather than days to months. These data provide the opportunity to observe Earth system processes with greater accuracy and detail, as they occur

    Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Get PDF
    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations

    Changes in Continental and Sea-salt Atmospheric Loadings in Central Greenland during the Most Recent Deglaciation: Model-based Estimates

    Get PDF
    By fitting a very simple atmospheric impurity model to high-resolution data on ice accumulation and contaminant f1uxes in the GISP2 ice core, we have estimated changes in the atmospheric concentrations of soluble major ions, insoluble particulates and 10Be during the transition from glacial to Holocene conditions. For many species, changes in concentration in the ice typically overestimate atmospheric changes, and changes in flux to the ice typically underestimate atmospheric changes, because times of increased atmospheric contaminant loading are also times of reduced snowfall. The model interpolates between the flux and concentration records by explicitly allowing [or wet- and dry- deposition processes. Compared to the warm Preboreal that followed, we estimate that the atmosphere over Greenland sampled b y snow accumulated during the Younger Dryas cold event contained on average four-seven times the insoluble particulates and n early seven times the soluble calcium derived from continental sources, and about three times the sea salt but only slightly more cosmogenic 10Be

    Application of constitutive friction laws to glacier seismicity

    Get PDF
    While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick-slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris-laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice-slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick-slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock-on-rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate-and-state friction laws that were developed for rock friction

    Shear velocity structure of central Antarctica from teleseismic Rayleigh waves

    Get PDF
    第2回極域科学シンポジウム/第31回極域地学シンポジウム 11月16日(水) 国立国語研究

    Tidal controls on the flow of ice streams

    Get PDF
    The flow of many Antarctic ice streams is known to be significantly influenced by tides. In the past, modeling studies have implemented the tidal forces acting on a coupled ice stream/ice shelf system in a number of different ways, but the consequences that this has on the modeled response of ice streams to tides have, until now, not been considered. Here we investigate for the first time differences in model response that are only due to differences in the way tidal forcings are implemented. We find that attempts to simplify the problem by neglecting flexural stresses are generally not valid and forcing models with only changes in ocean back pressure will not capture either the correct amplitudes or length scale

    Implications of a High-Mass Diphoton Resonance for Heavy Quark Searches

    Get PDF
    Heavy vector-like quarks coupled to a scalar SS will induce a coupling of this scalar to gluons and possibly (if electrically charged) photons. The decay of the heavy quark into SqSq, with qq being a Standard Model quark, provides, if kinematically allowed, new channels for heavy quark searches. Inspired by naturalness considerations, we consider the case of a vector-like partner of the top quark. For illustration, we show that a singlet partner can be searched for at the 13\,TeV LHC through its decay into a scalar resonance in the 2γ++X2\gamma+\ell + X final states, especially if the diphoton branching ratio of the scalar SS is further enhanced by the contribution of non coloured particles. We then show that conventional heavy quark searches are also sensitive to this new decay mode, when SS decays hadronically, by slightly tightening the current selection cuts. Finally, we comment about the possibility of disentangling, by scrutinising appropriate kinematic distributions, heavy quark decays to StSt from other standard decay modes.Comment: 8 pages, 3 figures and 1 table; v3: typos fixed. Matches published versio
    corecore