247 research outputs found

    Optical alignment of oval graphene flakes

    Full text link
    Patterned graphene, as an atomically thin layer, supports localized surface plasmon-polaritons (LSPPs) at mid-infrared or far-infrared frequencies. This provides a pronounced optical force/torque in addition to large optical cross sections and will make it an ideal candidate for optical manipulation. Here, we study the optical force and torque exerted by a linearly polarized plane wave on circular and oval graphene flakes. Whereas the torque vanishes for circular flakes, the finite torque allows rotating and orienting oval flakes relative to the electric field polarization. Depending on the wavelength, the alignment is either perpendicular or parallel. In our contribution, we rely on full-wave numerical simulation but also on an analytical model that treats the graphene flakes in dipole approximation. The presented results reveal a good level of control on the spatial alignment of graphene flakes subjected to far-infrared illumination.Comment: Copyright 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. Online abstract lin

    Tunable Graphene Antennas for Selective Enhancement of THz-Emission

    Get PDF
    In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices

    Minimalist Mie coefficient model

    Get PDF
    When considering light scattering from a sphere, the ratios between the expansion coefficients of the scattered and the incident field in a spherical basis are known as the Mie coefficients. Generally, Mie coefficients depend on many degrees of freedom, including the dimensions and electromagnetic properties of the spherical object. However, for fundamental research, it is important to have easy expressions for all possible values of Mie coefficients within the existing physical constraints and which depend on the least number of degrees of freedom. While such expressions are known for spheres made from non-absorbing materials, we present here, for the first time to our knowledge, corresponding expressions for spheres made from absorbing materials. To illustrate the usefulness of these expressions, we investigate the upper bound for the absorption cross section of a trimer made from electric dipolar spheres. Given the results, we have designed a dipolar ITO trimer that offers a maximal absorption cross section. Our approach is not limited to dipolar terms, but indeed, as demonstrated in the manuscript, can be applied to higher order terms as well. Using our model, one can scan the entire accessible parameter space of spheres for specific functionalities in systems made from spherical scatterers

    Perfect absorbers on curved surfaces and their potential applications

    Get PDF
    Recently perfect metamaterial absorbers triggered some fascination since they permit the observation of an extreme interaction of light with a nanostructured thin film. For the first time we evaluate here the functionality of such perfect absorbers if they are applied on curved surfaces. We probe their optical response and discuss potential novel applications. Examples are the complete suppression of back-scattered light from the covered objects, rendering it cloaked in reflection, and their action as optical black holes

    Emerging Prototyping Activities in Joint Radar-Communications

    Full text link
    The previous chapters have discussed the canvas of joint radar-communications (JRC), highlighting the key approaches of radar-centric, communications-centric and dual-function radar-communications systems. Several signal processing and related aspects enabling these approaches including waveform design, resource allocation, privacy and security, and intelligent surfaces have been elaborated in detail. These topics offer comprehensive theoretical guarantees and algorithms. However, they are largely based on theoretical models. A hardware validation of these techniques would lend credence to the results while enabling their embrace by industry. To this end, this chapter presents some of the prototyping initiatives that address some salient aspects of JRC. We describe some existing prototypes to highlight the challenges in design and performance of JRC. We conclude by presenting some avenues that require prototyping support in the future.Comment: Book chapter, 54 pages, 13 figures, 10 table

    Moiré flat bands in strongly coupled atomic arrays

    Get PDF
    Moiré effects arise from stacking periodic structures with a specific geometrical mismatch and promise unique possibilities. However, their full potential for photonic applications has yet to be explored. Here, we investigate the photonic band structure for an atomic stack of strongly coupled linear arrays in the dipolar regime. A moiré parameter θ is used to parameterize a relative lattice constant mismatch between the two arrays that plays the role of a 1D twist angle. The system’s interaction matrix is analytically diagonalized and reveals the presence of localized excitations which strongly enhance the density of optical states in spectral regions that can be controlled via the moiré parameter. We also confirm our findings by numerical simulations of finite systems. Our work provides a better understanding of photonic moiré effects and their potential use in photonic devices such as optical sensors and light traps

    Waveform Design for 4D-Imaging mmWave PMCW MIMO Radars with Spectrum Compatibility

    Get PDF
    4D-imaging mmWave radars offer high angular resolution in both azimuth and elevation, but achieving this requires a large antenna aperture size and a significant number of transmit and/or receive channels. This presents a challenge for designing transmit waveforms that are both orthogonal and separable on the receive side, as well as have low auto-correlation sidelobes. This paper focuses on designing an orthogonal set of sequences for 4D-imaging radar sensors based on PMCW technology. We propose an iterative optimization framework based on Coordinate Descent, which considers the Regions Of Interest (ROI) and optimizes a phase-modulated constant modulus waveform set based on weighted integrated sidelobe level on the required ROI and spectrum shaping. The optimization also accounts for the radar working adjacent to communication systems and other radar sensors. Simulation results are provided to demonstrate the effectiveness of the proposed method, which achieves low sidelobe levels and is compatible with spectrum constraints

    A Blender-based channel simulator for FMCW Radar

    Full text link
    Radar simulation is a promising way to provide data-cube with effectiveness and accuracy for AI-based approaches to radar applications. This paper develops a channel simulator to generate frequency-modulated continuous-wave (FMCW) waveform multiple inputs multiple outputs (MIMO) radar signals. In the proposed simulation framework, an open-source animation tool called Blender is utilized to model the scenarios and render animations. The ray tracing (RT) engine embedded can trace the radar propagation paths, i.e., the distance and signal strength of each path. The beat signal models of time division multiplexing (TDM)-MIMO are adapted to RT outputs. Finally, the environment-based models are simulated to show the validation.Comment: Presented in ISCS2
    • …
    corecore