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Abstract: Moiré effects arise from stacking periodic structures with a specific geometrical
mismatch and promise unique possibilities. However, their full potential for photonic applications
has yet to be explored. Here, we investigate the photonic band structure for an atomic stack of
strongly coupled linear arrays in the dipolar regime. A moiré parameter θ is used to parameterize
a relative lattice constant mismatch between the two arrays that plays the role of a 1D twist angle.
The system’s interaction matrix is analytically diagonalized and reveals the presence of localized
excitations which strongly enhance the density of optical states in spectral regions that can be
controlled via the moiré parameter. We also confirm our findings by numerical simulations of
finite systems. Our work provides a better understanding of photonic moiré effects and their
potential use in photonic devices such as optical sensors and light traps.
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1. Introduction

Moiré effects encompass a variety of physical phenomena resulting from superimposing two
periodic structures with a slight geometric mismatch. A well-known setup exhibiting these
effects are moiré metasurfaces, parallel stacks of metasurfaces with a relative twist angle [1]. The
study of moiré effects has attracted significant attention in recent research, as it promises novel
avenues to tune the properties of light and its interaction with matter [2–4]. This has already
led to profound findings such as light localization in lattice structures written in photorefractive
materials [5], the ability to engineer the plasmon dispersion relation in evanescently coupled
metasurfaces [2] and the discovery of exotic optical states exhibiting characteristics of both moiré
flat bands and (quasi-)bound states in the continuum [6]. However, a deeper understanding of
moiré effects from first principles and their impact on photonic band structures remains a prime
challenge for current research in nano-optics [1,7,8] and numerical and computational methods
that can explore such systems are investigated more recently [9–14]. Moiré flat bands have also
been explored in graphene nanoribbons [15], electric circuits with extremely high degrees of
freedom [16] and 1D electronic geometries [17]. Since the understanding of moiré flat bands
in bilayer photonic crystals has been deepened considerably by analytical means [18], we aim
to provide a comparable treatment of 1D photonic structures composed of atomic dipoles. The
lack of such a treatment is hindering a more thorough understanding of higher-dimensional
geometries, built from e.g. individual meta-atoms, as well.

To respond to this challenge, this work explores one-dimensional linear arrays of atoms
characterized by an electric dipolar response [19,20]. By stacking two of these arrays on top of
each other, moiré effects can be investigated by introducing a relative lattice constant mismatch
between the upper and the lower array, parameterized by a moiré parameter θ (see Fig. 1) [21,22].
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Fig. 1. Two moiré unit cells for a setup of two stacked arrays with lattice constants Λ2,
Λ1. The lateral separation between the two arrays is given by d. The depicted geometry is
described by a moiré parameter value of θ = 3

4 . The periodicity of the overall setup is then
given by Λ = 3Λ1 = 4Λ2. The i-th atom in the n-th unit cell carries a dipole moment pi,n.
By Bloch’s theorem, these dipole moments are identical for equivalent atoms in different
unit cells up to a phase. This relationship is indicated by an identical color code.

In the limit of strong coupling, where the spatial separation between the two arrays is minimal,
heavily localized collective excitations emerge that are approximately characterized by infinite
lifetimes and a vanishing dispersion. In the band structure, these excitations appear as flat bands
of a near-lossless system, while they manifest as sharp peaks in the density of optical states
(DOS). The spectral location of these field-enhancing flat bands can be revealed to be a moiré
effect that is controllable mainly via adjustment of the moiré parameter θ. Using an analytical
approach relying on the diagonalization of the system’s interaction matrix, the spectral location
of these bands can be calculated from basic expressions depending on the distances between
nearest-neighbor pairs in a unit cell. A comparison to numerical simulation results obtained for
finite systems demonstrates that spectral control of system resonances is largely achievable by an
appropriate choice of the moiré parameter θ. In our treatment, we focus on rational values of θ
since incommensurable configurations, corresponding to irrational values of θ, do not exhibit
a periodically repeated unit cell. This makes them inaccessible to our numerical method and
precludes us from applying Bloch’s theorem, which our theoretical treatment crucially relies on.
However, since any irrational value of θ might be approximated by a sufficiently close rational
one, this presents no inherent limitation to the applicability of our results.

Our results provide a better understanding of photonic moiré effects and point to their potential
use in future photonic devices such as optical sensors and light traps. The remainder of this paper
is organized as follows: In Sec. 2, we briefly introduce the theoretical framework underlying
the description of dipolar collective excitations in atomic structures of finite spatial extent. A
particular focus is given to the finite system’s interaction matrix, a non-Hermitian Hamiltonian
capturing atomic dipole-dipole interactions, which our numerical treatment is based on. This
quantity delivers the spectral information needed to construct approximate band structures and
compute field enhancement in terms of the DOS. In Sec. 3, we introduce the interaction matrix
for infinite, periodic structures. The resulting matrix is a function of crystal momenta in the
irreducible Brillouin zone and captures the effective lattice-mediated interaction between dipoles
in a unit cell. It is intimately related to the appearance of effective polarizabilities, detailed,
e.g., in Refs. [23] or [24]. This k-space interaction matrix enables us to derive analytical
expressions for the band structure and decay rates of periodic arrays. These expressions take
comparatively accessible form in the perturbative limit of small spatial inter-array separation.
We identify this limit as an inter-array nearest-neighbor approximation that still retains the
total intra-array lattice interactions. This lattice-mediated NN-approximation provides valuable
insight into the underlying physics of the phenomena under study and thus guides our numerical
investigations. In Sec. 4, we develop the perturbative approach described above starting from
perfectly aligned geometries and finally apply it in Sec. 5 to study the effects of moiré geometries.
It is revealed that moiré flat bands arise from collective excitations characterized by out-of-phase
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atomic dipole oscillations in different arrays. The spectral position of a flat band is given by a
comparatively simple composition of harmonic functions and can be controlled by adjusting
inter-array nearest-neighbor distances via appropriate choices for θ. We then conclude our
investigation with a summary of the results in Sec. 6. A brief derivation of the interaction matrix
in the finite and infinite periodic case is presented in Appendix A. Details on the numerical
simulation procedure and links to the source code are provided in Appendix B. In Appendix C, we
illustrate the validity of the presented results in the strong-coupling regime, while in Appendix D,
we discuss the impact of fabrication errors conceptualized as positional disorder on moiré flat
bands.

2. Interaction matrices for finite systems

We consider a collection of identical atoms with an electric dipolar response and model the
polarizability of a single atom by a Lorentzian [25,26]

α(ω) = ε0
α0Γ0/2

ω − ω0 +
i
2Γ0

, (1)

where α0 = − 6π
k3

0
refers to the oscillator strength, k0 =

2π
λ0

is the atomic resonance wave number
and Γ0 captures radiative losses [27]. This dipolar scattering response might be realized e.g.
in atomic Bose-Einstein condensates, where a two-level transition is selected from the atomic
excitation manifold by applying a stabilizing magnetic field. Such a setup has been reported in
Ref. [28] for D2-transitions of 87Rb atoms between the state identified by F1 = 2, m1 = −2 and
the state identified by F2 = 3, m2 = −3, where Fi is the hyperfine and mi is the magnetic quantum
number.

The resonance behaviour of this geometry is captured by a 3N × 3N non-Hermitian matrix M.
It is called the interaction matrix and plays the role of an effective, non-Hermitian Hamiltonian
describing the atomic dipole-dipole interactions. Denoting the position of the i-th atom by ri, it
can be expressed in block-form as follows

M =
⎛⎜⎜⎜⎜⎝

i · I3 · · · −k2
0α0G(k0, r1 − rN)

...
. . .

...

−k2
0α0G(k0, rN − r1) · · · i · I3

⎞⎟⎟⎟⎟⎠
. (2)

Here, we denote the n-dimensional unit matrix by In. The matrix G(k, r) is the dyadic Green’s
tensor, whose components are given by [29,30]

Gij(k0, r) = eik0r

4πr

[︄(︄
1 +

ik0r − 1
k2

0r2

)︄
I3 +

(︄
−1 +

3 − 3ik0r
k2

0r2

)︄
r ⊗ r

r2

]︄
, (3)

where r = |r|. The 3N complex eigenvalues ml and (right) eigenvectors of the interaction matrix
M encode information about the quasi-modes supported by the system, each of which can be
characterized by a frequency ωl and associated decay rate Γl that depend on the eigenvalues as
follows [31]

∆l = ωl − ω0 = −Γ0/2Re(ml), (4)

Γl = Γ0Im(ml). (5)

In Eqn. (4), we have defined the resonance frequency of the quasi-mode relative to the single
atom resonance frequency ω0 for convenience. The connection of these quantities to the field
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enhancement is given by the normalized density of optical states (DOS) of atomic excitations at
frequency ω, which is given by [31]

DOS(ω) =
1

3Nπ

N∑︂
l=1

Γl/2
(ω − ω0 − ∆l)2 + (Γl/2)2

. (6)

In this paper, we numerically diagonalize the interaction matrix for finite 1D geometries. We
aim to identify co-occurring system resonances, i.e., a set of resonance indices L such that for
each index combination l, l′ ∈ L, it holds that ∆l ≈ ∆l′ . From Eqn. (6), it can be seen that for
ω − ω0 close to these co-occurring resonances, the DOS strongly increases. This implies large
field enhancement in the corresponding spectral region.

To gain a deeper understanding of the underlying physical effects, we additionally derive closed
analytical expressions for quantities analogous to Eqns. (4) and (5) in infinite systems. Since the
infinite case deals with system properties in reciprocal space, where the resonance and line width
depend on a 1D crystal momentum k, we also need to construct approximate dispersion diagrams
for finite systems.

This can be achieved by associating a crystal momentum to each resonance and decay rate
in Eqns. (4) and (5) by a Fourier analysis of the corresponding eigenvector. This approach is
outlined in greater detail in Appendix B. Represented as part of the band structure, co-occurring
resonances manifest as flat bands in the dispersion. We then study how moiré tuning of the
external geometry can influence the occurrence and spectral location of these flat bands.

3. Interaction matrices for infinite periodic systems

An infinite system of resonant dipoles with periodicity Λ and N dipoles in the unit cell can again
be described by a 3N × 3N interaction matrix MP(k), which takes the following block form

MP(k) =
⎛⎜⎜⎜⎜⎝

iI3 − k2
0α0G̃(k, 0) · · · −k2

0α0G̃(k, r1 − rN)

...
. . .

...

−k2
0α0G̃(k, rN − r1) · · · iI3 − k2

0α0G̃(k, 0)

⎞⎟⎟⎟⎟⎠
, (7)

where the quantity G̃(k, r) is a "dressed" tensor describing the lattice-mediated dipolar interaction
between the i-th and j-th atom in the unit cell defined by

G̃(k, ri − rj) =

⎧⎪⎪⎨⎪⎪⎩
∑︁
n

G(k0, ri,0 − rj,n)eiknΛ i ≠ j∑︁
n≠0

G(k0, ri,0 − ri,n)eiknΛ i = j
(8)

Following Eqns. (4) and (5), we obtain the band structure and collective decay rates of the
infinite system from the 3N eigenvalues mP,l(k) of MP(k) as

∆l(k) = −Γ0/2Re(mP,l(k)), (9)

Γl(k) = Γ0Im(mP,l(k)). (10)
Additionally, it is useful to express both the collective resonance shift and the decay rates in

terms of the single-atom decay rate as follows

D ≡
∆

Γ0
, G ≡

Γ

Γ0
. (11)

We do so for quantities relating to finite and periodic systems. However, in the case of periodic
systems, we still indicate the dependence of the normalized quantities above on the crystal
momentum with the notation D(k), G(k).
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4. Perfectly aligned geometries

Our initial focus is on perfectly aligned geometries without moiré effects to develop a perturbative
ansatz concerning the exact solution for a single linear dipolar array.

Let us first consider a single infinite periodic array with lattice constant Λ, described by a
single dipole in a unit cell. Such a setup has already been analyzed in the literature by analytical
means slightly different from ours, e.g. in [32], but we briefly discuss it here as it serves as the
basis of our perturbation theory and a convenient illustration of the overall methodology. We
chose the direction of periodicity to be along the z-axis and compute the corresponding 3 × 3
interaction matrix M0(k) from Eqn. (7)

M0(k) = iI3 − k2
0α0G̃(k, 0) = iI3 − k2

0α0 · diag(g⊥(k), g⊥(k), g∥(k)), (12)

where the diagonal elements of G̃(k, 0) fullfill g11(k) = g22(k) ≡ g⊥(k), g33(k) ≡ g∥(k) due to
cylindrical symmetry and are given by

g∥(k) =
∑︂
n≠0

ei(k0 |nΛ |+nΛk)

4π |nΛ|

(︄
2(1 − ik0 |nΛ|)

k2
0 |nΛ|2

)︄
, (13)

g⊥(k) =
∑︂
n≠0

ei(k0 |nΛ |+nΛk)

4π |nΛ|

(︄
1 +

ik0 |nΛ| − 1
k2

0 |nΛ|2

)︄
. (14)

The eigenvalues of M0(k) are identical to its diagonal elements. To arrive at closed expressions,
we split the series occurring in Eqns. (13) and (14) into real and imaginary parts, which yield
well-known limits, which are given in Ref. [33]. The real part converges to a sum of the first
three generalized Clausen functions Cli. In contrast, the imaginary part converges to a sum of
Bernoulli polynomials, which are restricted to be periodic on the interval [0, 2π]. Collecting
terms, and with the dimensionless wave numbers

K0 = k0Λ, (15)

K = kΛ, (16)

K± = (k0 ± k)Λ, (17)

we obtain after some algebra using Eqns. (9) and (10)

∆∥(K) =
k2

0α0Γ0

4πΛ

(︄
Cl2(K+) + Cl2(K−)

K0
+

Cl3(K+) + Cl3(K−)

K2
0

)︄
, (18)

∆⊥(K) =
k2

0α0Γ0

8πΛ

(︄
Cl1(K+) + Cl1(K−) −

Cl2(K+) + Cl2(K−)

K0
−

Cl3(K+) + Cl3(K−)

K2
0

)︄
, (19)

Γ∥(K) =
−k2

0α0Γ0

4Λ
θ(K0 − K)

(K2
0 − K2)

K2
0

, (20)

Γ⊥(K) =
−k2

0α0Γ0

8Λ
θ(K0 − K)

(K2
0 + K2)

K2
0

, (21)

where θ(K0 − K) denotes the step function.
We note that formally equivalent expressions have been derived elsewhere, e.g., in Refs. [34]

and [32]. Figure 2 displays a comparison to approximate band structures for a finite system of 40
atoms. Of special interest in the above equations is the fact that modes with a crystal momentum
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Fig. 2. Normalized band structure (left) and collective decay rates (right) for a single array
with lattice constantΛ = 0.2λ0. The solid lines show the analytical expression for the infinite
case, while the dots mark the simulation results for the approximate band structure of a
finite system of 40 atoms. The dashed gray line indicates the light line, where the crystal
momentum is identical to the atomic resonance wave number k0.

k greater than the single atom resonance wave number k0, are perfectly guided and do not radiate
to infinity as their decay rates vanish.

We use Eqn. (12) as the starting point of our perturbative treatment by considering two identical,
perfectly aligned arrays separated by a distance d in y-direction (this corresponds to Λ1 = Λ2 in
Fig. 1). Since the unit cell of this geometry encompasses two atoms, the interaction matrix M(k)
is 6 × 6 and can again be computed from Eqn. (7)

M(k) = ⎛⎜⎝
M0(k) −k2

0α0G̃(k, d)

−k2
0α0G̃(k,−d) M0(k)

⎞⎟⎠ = M0(k) ⊗ I2 + C(k), (22)

where M0(k) ⊗ I2 refers to two uncoupled arrays, serving as our exact analytical reference, and
the off-diagonal blocks, collected in C(k), describe the inter-array coupling, which we will treat
perturbatively. The matrix G̃(k, d) = G̃(k,−d) is a function of the inter-array displacement vector
d = dey. We express it in components as

G̃11(k, d) =
∞∑︂

n=−∞

f (rn)

4πrn

(︃
1 +

ikrn − 1
k2r2

n

)︃
, (23)

G̃22(k, d) = d2
∞∑︂

n=−∞

f (rn)

4πr3
n

(︃
−1 +

3(1 − ikrn)

k2r2
n

)︃
+ G̃11(k, d), (24)

G̃33(k, d) =
∞∑︂

n=−∞

f (rn)(nΛ)2

4πr3
n

(︃
−1 +

3(1 − ikrn)

k2r2
n

)︃
+ G̃11(k, d), (25)

G̃23(k, d) = G̃32(k, d) = d
∞∑︂

n=−∞

f (rn)(nΛ)
4πr3

n

(︃
−1 +

3(1 − ikrn)

k2r2
n

)︃
, (26)

G̃12(k, d) = G̃21(k, d) = G̃31(k, d) = G̃13(k, d) = 0, (27)

where rn =
√︁
(nΛ)2 + d2, f (rn) = ei(k0rn+knΛ).
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We consider the case of strong geometric coupling d<<λ0 and take the limit d → 0, effectively
collapsing the two arrays into one. To do this, we isolate the singular contributions in the lattice
summations that always originate from nearest neighbor interactions with n = 0 and retain them as
explicit functions of d while dropping all other powers of d. Physically, this makes our treatment
equivalent to approximating the total inter-array interaction by its nearest-neighbor contribution,
while still taking the full intra-array interactions into account. Inspecting the occurring sums, one
can see that the off-diagonal elements in Eqn. (26) vanish in this limit because the summand n = 0
does not contribute, and the remaining terms decrease linearly with d. Similarly, the first term in
Eqn. (24) may be neglected, leaving us with two distinct singularities in Eqns. (23)–(25), which
need to be retained. Taking this together, the inter-array coupling matrix takes the following
diagonal form, valid in the perturbative limit

G̃(k, d) = G̃(k, 0) − diag(c1(d), c2(d), c1(d)), (28)

where the nearest-neighbor contributions

c1(d) =
eik0d

4πd

(︄
1 +

ik0d − 1
k2

0d2

)︄
, (29)

c2(d) =
eik0d

2πd

(︄
1 − ik0d

k2
0d2

)︄
, (30)

are only functions of the inter-array NN-distance d. Together with Eqn. (22), we see that the
entire system interaction matrix M(k) is composed solely of blocks of diagonal matrixes. It is
comparatively straightforward to express M(k) in an appropriate eigenbasis, where it is given by

M(k) = Mflat ⊕ Mcurved(k), (31)

where
Mflat = iI3 + k2

0α0 · diag(c1(d), c2(d), c1(d)), (32)

Mcurved(k) = iI3 − k2
0α0 · diag(2g⊥(k) + c1(d), 2g⊥(k) + c2(d), 2g∥(k) + c1(d)). (33)

Thus, the spectrum separates into a k-independent and a k-dependent part, a phenomenon that
generalizes to moiré setups. We stress that the limit of strong spatial coupling d → 0, which lies
at the heart of our perturbative approach, is necessary for the interaction matrix to obtain the
easily diagonalizable form above. From the real and imaginary part of these eigenvalues, the
associated band structure and decay rates can again be computed using Eqns. (10) and (9). To
this end, we define

F1(d) = −
k2

0α0

2
Re(c1(d)) = −

k2
0α0Γ0

8πd

(︄
cos(k0d) −

cos(k0d)
k2

0d2
−

sin(k0d)
k0d

)︄
, (34)

F2(d) = −
k2

0α0Γ0

2
Re(c2(d)) = −

k2
0α0Γ0

4πd

(︄
cos(k0d)

k2
0d2

+
sin(k0d)

k0d

)︄
, (35)

and arrive at the following expressions for the band structure

∆1,+(K, d) = 2∆⊥(K, d) − F1(d), ∆1,−(K, d) = F1(d), (36)

∆2,+(K, d) = 2∆⊥(K, d) − F2(d), ∆2,−(K, d) = F2(d), (37)

∆3,+(K, d) = 2∆∥(K, d) − F1(d), ∆3,−(K, d) = F1(d). (38)
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Fig. 3. Approximate band structure (left) and associated DOS (right) for a system of
perfectly aligned arrays with Λ = 0.3λ0, separated by a distance d = 0.1λ0 containing 60
atoms. The colorbar marks the associated decay rates. The solid lines indicate the band
structure according to the nearest-neighbor approximation given by Eqns. (36)–(38). As
can be seen, flat bands are nearly lossless and correspond to a strongly enhanced density of
optical states. The dashed grey line in the left plot marks the light line given by k = k0 as
in Fig. 2. We note that, in accordance with Eqns. (41)–(43), the flat bands exhibit strongly
suppressed losses. Additionally, we remark on the degeneracy of two of the flat bands
D1,−(k) and D3,−(k) obtained from Eqns. (36) and (38).

To obtain the decay rates, we substitute x = dk0 and compute

Im(c1(x)) =
k0
4π

(︂
sin(x)/x + cos(x)/x2 − sin(x)/x3

)︂
, (39)

Im(c2(x)) =
k0
2π

(︂
sin(x)/x3 − cos(x)/x2

)︂
, (40)

The singularity of these expressions in the limit x → 0 is removable. Application of
L’Hôpital’s rule then yields limx→0 Im(c1(x)) = limx→0 Im(c2(x)) = k0

6π = −(α0k2
0)

−1. Together
with Eqns. (32) and (33), this ultimately gives

Γ1,+(K) = 2Γ⊥(K), Γ1,−(K) = 0, (41)

Γ2,+(K) = 2Γ⊥(K), Γ2,−(K) = 0, (42)

Γ3,+(K) = 2Γ∥(K), Γ3,−(K) = 0. (43)

Of note is the appearance of lossless flat bands, encoded by F1(d), F2(d), which are compositions
of harmonic functions. We note that the flat bands obtained from Eqns. (36) and (38) are
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degenerate. In Fig. 3, the connection of the band structure to the DOS of a finite system with 60
atoms is illustrated. The physical meaning behind the occuring flat bands is the out-of-phase
oscillation of atomic dipole moments in different arrays resulting in highly suppressed radiation.
A mathematical justification for this explanation will be given in the following discussion of
general moiré setups.

5. Moiré effects

We now focus on general moiré geometries, illustrated in Fig. 1. Again, we consider the direction
of periodicity to be along the z-axis and the arrays to be separated by a distance d in y-direction. In
contrast to the previous discussion, we now allow the array periodicities to differ. The periodicity
of the array at y = 0 is denoted by Λ1. It is related to the periodicity Λ2 of the array at y = d by
the moiré parameter θ according to

Λ2 = θΛ1. (44)

A commensurable configuration is present if the entire stack can be obtained by translating an
appropriate unit cell with an overall periodicity Λ. Commensurable configurations correspond
to values of θ in the rational numbers, such that there exists a pair of natural numbers (n, m)

fulfilling θ = m/n. The periodicity of the composite system Λ is then given by mΛ1 = nΛ2.
Without loss of generality, we assume that n>m.

The interaction matrix is thus 3N × 3N, where N = n + m is the number of atoms in the unit
cell. By Eqns. (7) and (12), we can decompose it into a diagonal contribution resulting from N
uncoupled arrays and a coupling matrix C(k), analogous to Eqn. (22) as follows

M(k) = M0(k) ⊗ IN + C(k), (45)

where C(k) is composed of block matrices −k2
0α0G̃(k, dij), which are functions of the distance

vector dij between the i-th and j-th atom. They are given by slightly modified versions of the
expressions in Eqns. (23)–(27). With the definitions d = dey + dzez and rn = |d + nΛez | as well
as f (rn) = eik0rn+knΛ, they read

G̃11(k, d) =
∞∑︂

n=−∞

f (rn)

4πrn

(︃
1 +

ikrn − 1
k2r2

n

)︃
, (46)

G̃22(k, d) = d2
∞∑︂

n=−∞

f (rn)

4πr3
n

(︃
−1 +

3(1 − ikrn)

k2r2
n

)︃
+ G̃11(k, d), (47)

G̃33(k, d) =
∞∑︂

n=−∞

f (rn)(nΛ + dy)
2

4πr3
n

(︃
−1 +

3(1 − ikrn)

k2r2
n

)︃
+ G̃11(k, d), (48)

G̃23(k, d) = G̃32(k, d) = d
∞∑︂

n=−∞

f (rn)(nΛ + dy)

4πr3
n

(︃
−1 +

3(1 − ikrn)

k2r2
n

)︃
, (49)

G̃12(k, d) = G̃21(k, d) = G̃31(k, d) = G̃13(k, d) = 0. (50)

In the moiré unit cell, we identify m inter-array nearest-neighbor pairs, leaving n − m unpaired
atoms. Analogous to our treatment of perfectly aligned arrays, we make the inter-array nearest-
neighbor approximation. This implies taking the limit of d → 0, which diagonalizes all coupling
matrices by the equations above. Additionally, we take the limit dz → 0 required to define
inter-array nearest-neighbors in our approximation reliably. The procedure of isolating singular
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terms and dropping all non-singular powers of d and dz in Eqns. (46)–(50) is carried out
analogously to the previous section. The asymptotic form of the NN-coupling matrices follows

G̃(k, dij) = G̃(k, 0) − diag(c1(dij), c2(dij), c1(dij)). (51)

As before, G̃ depends only on the nearest-neighbor distance. Notice that this asymptotic form
only applies to the 2m matrices coupling nearest neighbors and not to any of the other matrices
entering C(k).

We now employ a partial diagonalization procedure for the entire interaction matrix M(k).
First, we subdivide the Cartesian basis of C3N into N vectors vi, i ∈ {1, . . . , N}, defined as

vi
a = δ1,a + δ2,a + δ3,a. (52)

The physical intuition behind this notation is that vi
a corresponds to the a-th dipolar excitation

component of the i-th atom in the moiré unit cell. Then, we can represent the interaction matrix
as

M(k) =
3∑︂

a=1

N∑︂
i=1

M0,aa(k)vi
aviT

a +

3∑︂
a=1

∑︂
i≠j

−k2
0α0G̃aa(k, dij)vi

avjT
a . (53)

The summation over Cartesian components is redundant because all matrices are diagonal,
so we omit it in the following. Consider now an arbitrary pair of inter-array nearest neighbors
identified by the indices i1, i2. We perform a change of basis

vi1,i2 =
1
√

2
(v+±v−). (54)

We recognize this basis as the optical analogon of bonding and antibonding states given
for electrons, e.g., in Ref. [17], which is a phenomenon well observed in plasmonics [35,36].
The vector v+ describes in-phase oscillations of the nearest-neighbor pair, while the vector v−
describes out-of-phase oscillations [37,38]. In the limit d → 0, di1i2,z → 0, the coupling to any
dipole in the unit cell indexed by j fulfills G̃(k, di1j) = G̃(k, di2j) as well as G̃(k, dji1 ) = G̃(k, dji2 )

since the nearest neighbors effectively collapse into a single point. It follows that

M(k) =
(︂
M0(k) + k2

0α0G̃(k, di1i2 )
)︂

v−vT
− +

(︂
M0(k) − k2

0α0G̃(k, di1i2 )
)︂

v+vT
+ (55)

+

N∑︂
j≠i1,i2

−
√

2k2
0α0

(︂
G̃(k, di1j)vjvT

+ + G̃(k, dji1 )v+vjT
)︂

(56)

+

N∑︂
i≠i1,i2

M0(k)viviT +
∑︂

i≠j,i1,i2

−k2
0α0G̃(k, dij)vivjT . (57)

Despite its unwieldy appearance, this expression has a simple physical interpretation. First,
Eqn. (55) is the sum of bonding and antibonding self-interaction matrices. Equation (56) implies
that only the bonding state couples to the excitation manifold supported by the remaining N − 2
atoms in the moiré unit cell. Finally, Eqn. (57) describes the interaction among these remaining
N − 2 atomic dipoles. We conclude that in the inter-array NN-limit a system of N interacting
lattice modes is equivalent to a system composed of N − 1 interacting modes, an additional,
completely decoupled mode.

We can thus repeat the procedure detailed above m times for every pair of inter-array nearest
neighbors, each time performing the change of basis to bonding and antibonding states. We
ultimately arrive at the following partially diagonal form of the system interaction matrix

M(k) = Mflat ⊕ Mcurved(k). (58)

Here, Mflat is a diagonal matrix, while, in contrast to the matrix in Eqn. (22) for perfectly
aligned arrays, the matrix Mcurved(k) is not diagonal in general as it describes coupling among
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Fig. 4. Approximate low-loss (G(k)<0.1) band structure for strongly coupled d = 0.1λ0
arrays with Λ1 = 0.3λ0. Each finite moiré setup is composed of 30 unit cells to ensure
approximate applicability of Bloch’s theorem. Theoretically predicted low-loss flat bands
are shown as dashed lines and approximate most of the near-lossless approximately constant
bands seen in the numerically determined band structure. As the value of the moiré parameter
approaches 1, the number of nearest neighbors in the unit cell is increased and, consequently,
the number of flat bands introduced in the spectrum grows.

bonding states and untransformed lattice modes. The matrix Mflat gives rise to flat bands with
infinite lifetimes, thus corresponding to lossless and localized modes. From Eqn. (54), these
flat bands can be given a physical meaning in terms of out-of-phase dipolar oscillations of
nearest-neighbors in a unit cell. We might thus conceptualize flat band modes as interfering
destructively over the small spatial separation between the arrays to produce non-radiating,
trapped states.

Using Eqns. (9) and (55), we observe that every nearest neighbor pair i, j separated by distance
dij introduces two flat bands given by

∆1(dij) = −
k2

0α0Γ0

8πdij

(︄
cos(k0dij) −

cos(k0dij)

k2
0d2

ij
−

sin(k0dij)

k0dij

)︄
, (59)

∆2(dij) = −
k2

0α0Γ0

4πdij

(︄
cos(k0dij)

k2
0d2

ij
+

sin(k0dij)

k0dij

)︄
. (60)

The exact value and number of distinct distances dij depend on the choice of θ. It is
worthwhile to contrast these expressions to the ones obtained in the perfectly aligned case given
by Eqns. (36)–(38). In the perfectly aligned case, only two distinct spectral regions of enhanced
DOS are expected, which is due to two-fold degeneracy in the flat band spectrum. For a moiré
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Fig. 5. DOS for strongly coupled d = 0.1λ0 arrays with Λ1 = 0.3λ0. Each finite moiré
setup is composed of 30 unit cells. Lossless flat bands from a theoretical inter-array nearest
neighbor approximation are shown as dashed lines and can approximate the location of most
of the peaks in the DOS.

setup, however, the occurrence of a large number of flat bands is possible, depending on the
number of distinct distances dij between dipoles in the unit cell. For smaller differences between
array periodicities, corresponding to values of θ closer to 1, we observe an increasing number of
flat bands as the number of nearest-neighbor dipoles in the unit cell increases. We thus recognize
the occurrence of these flat bands as a moiré effect enabled by inter-array NN-interactions.

Since these bands are ideally lossless, Fig. 4 highlights the low-loss spectrum of three different
moiré setups, characterized by different values of θ. Indeed, the occurrence of most flat bands is
correctly predicted by Eqns. (59) and (60). In Fig. 5, we present the ability of these expressions to
approximately identify most of the critical spectral regions where the DOS is strongly amplified.
Large field enhancement in a desired, albeit narrow, frequency domain may thus be achieved by
strong spatial coupling and an appropriate choice of the moiré parameter, where the expressions
in Eqns. (59) and (60) can serve as a guiding principle.

6. Conclusion

We have studied a 1D moiré geometry of atomic dipoles distributed among two coupled linear
arrays in a modified NN-approximation. Our approximation scheme fully considers lattice
interactions within a single array, allowing us to capture interactions between different arrays
via their nearest-neighbor contributions. Similar to how lossless curved bands arise in an
NN-approximation of uncoupled geometries [39], our treatment revealed the occurrence of
lossless flat bands in coupled geometries.

The spectral location of these flat bands is given by the distances between inter-array nearest
neighbors in a unit cell. Since a moiré unit cell contains multiple inequivalent nearest neighbors,
a multitude of flat bands emerge. These flat bands lead to strong amplification of the DOS around
the corresponding frequencies. We have numerically confirmed this effect of potentially high field
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enhancement in the regime of strong geometric coupling, where we expect the NN-contributions
to dominate.

We have thus unveiled photonic moiré geometries as a promising platform for highly tunable and
spectrally selective field enhancement that might be useful in applications geared towards sensing
or tunable light-matter interaction. From a theoretical perspective, our findings provide further
insight into the general nature of photonic moiré effects and might aid a better understanding of
these effects in more complicated setups regarding scatterer type and geometry.

Further research could focus on the generalization of the above results to 2D atomic dipolar
moiré structures, where we expect similar effects to occur and investigate the potentially rich
interplay between moiré geometry and other complex phenomena such as the study of topological
properties [40], investigating, e.g., topological (non-) triviality of moiré flat bands. Another
interesting avenue to explore could be the incorporation of higher-order multipole contributions
based on insights from the corresponding single-array geometries, e.g., in [41].

A. Interaction matrix

Here, we closely follow [31] in deriving the interaction matrix for finite geometries, which we
then generalize to the infinite periodic case, similar to [32].

As in Sec. 2, assuming a collection of N atoms at resonance, the total electric field at the
position ri of the i-th atom is

E(ri) =
k2

0
ε0

N∑︂
j≠i

G(k0, ri, rj)pj + Eext(ri), (61)

where Eext(ri) denotes the external field at ri, pi refers to the i-th atomic electric dipole moment,
and G is the dyadic Green’s tensor introduced in Eqn. (3). Bringing the sum in Eqn. (61) to the
opposite side and using pi = α(ω0)E(ri) leads to the equation

1
α(ω0)

pi −
k2

ε0

N∑︂
j≠i

G(k0, ri − rj)pj = Eext(ri). (62)

Defining p =
N⨁︁

i=1
pi, Eext =

N⨁︁
i=1

Eext(ri), this can be written compactly in terms of a 3N × 3N

matrix M
1
ϵ0α0

Mp = Eext, (63)

where M is the interaction matrix, which can be written in block-form as in Eqn. (2). Notice
that, as in Ref. [31], we define the matrix M as a dimensionless quantity and work in units of
the constant scaling factor (ϵ0α0)

−1 in Eqn. (63), implicitly adopting units where the atomic
polarizability in Eqn. (1) is dimensionless. The real and imaginary parts of the eigenvalues of
this matrix determine the system resonances and collective decay rates as in Eqns. (4) and (5). In
the case of a single dipolar array, discussed in the introductory part of Sec. 4, the interaction
matrix takes diagonal form and its eigenvalues are given by its diagonal elements.

The analytical treatment of an infinite system with periodicity Λ is largely analogous to the
previous discussion. As in Sec. 3, we describe the coupling between N dipoles in a unit cell,
including lattice interactions. To this end, we again consider the resonant periodic scattering
problem as expressed in Eqn. (61) and divide the periodic setup into unit cells, each containing
N particles. One can then apply Bloch’s theorem to connect the i-th atomic dipole moment in the
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n-th unit cell to the i-th atomic dipole moment in the 0-th unit cell

pi,n = pi,0eiknΛ, (64)

where k ∈ [0, π
Λ
] is the crystal momentum of the Bloch mode in the irreducible Brillouin zone.

The electric field at the position of the i-th dipole in the 0-th unit cell is then

E(ri,0) =
k2

ε0

∞∑︂
n=−∞

N∑︂
j≠i

G(k0, ri,0−rj,n)pj,0eiknΛ+
k2

ε0

∑︂
n≠0

G(k0, ri,0−ri,n)pi,0eiknΛ+Eext(ri,0), (65)

Analogous to how we arrived at Eqn. (62), this equation can be cast in matrix form by defining

p0 =
N⨁︁

i=1
pi,0, Eext =

N⨁︁
i=1

Eext(ri,0) and arriving at a 3N × 3N interaction matrix for a periodic

system MP(k)
1
ϵ0α0

MP(k)p0 = Eext. (66)

Expressing this matrix in block-form, we obtain Eqn. (7).

B. Simulation method

We adopt an FFT-based approach similar to [42] to construct approximate band structures for
sufficiently large finite systems. First, we create a geometry containing m unit cells with N atoms.
Denoting by pi,j the i-th atomic dipole moment in the j-th unit cell, we construct the interaction
matrix such that it acts on vectors of the form

p =
m⨁︂

i=1

N⨁︂
j=1

pi,j. (67)

We then subdivide each right eigenvector v of the interaction matrix into 3N vectors of length
m according to

wi,a =

m⨁︂
j=1

vi,j
a , (68)

where i ∈ {1, . . . , N} and a = 1, 2, 3 is the Cartesian component such that each vector w is
identified by a unique combination i, a. Out of these vectors, we select the critically contributing
one identified by

(ic, ac) = arg max(i,a)
m∑︂

j=1
|wi,a;j |. (69)

For this vector, we perform an FFT. From the resulting frequencies, we select and normalize
the dominant contribution to compute the approximate crystal momentum k.

Since the single atom resonance wavelength λ0 enters our treatment merely as a scaling factor
without influencing the physics, we set λ0 = 1 throughout our simulations. The simulations were
conducted using the library JAX for the Python programming language.

C. Validity regime of the perturbative treatment

The perturbative approach detailed in this work is formally similar to expanding the interaction
matrix in inverse powers of the inter-array distance d and dropping all terms non-singular in the
limit d → 0. As such, we expect our results to be affected by errors in the order of O(d). For
numerical confirmation, we performed simulations with a moiré setup characterized by θ = 3/4.
The lattice constant of the array at y = 0 is given by Λ1 = 0.3λ0 and we varied the inter-array
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Fig. 6. Approximate low-loss (G(k)<0.1) band structure for strongly coupled d = 0.1λ0
arrays with Λ1 = 0.3λ0 and θ = 3/4. The finite moiré setup is composed of 30 unit cells.
The prediction of flat bands according to Eqns. (59) and (60) ceases to be valid once the
strong coupling regime is left.

distance d. The results are displayed in Fig. 6. We conclude that our perturbative results provide
a mostly valid approximation in the near-field limit.

D. Robustness against fabrication errors

To investigate the effect of fabrication errors on the optical properties discussed in Sec. 5,
simulations involving positional disorder in the sample are conducted. These simulations are
performed with a moiré setup characterized by θ = 3/4 and an inter-array distance of d = 0.1λ0.
The lattice constant of the array at y = 0 is given by Λ1 = 0.3λ0. Positional disorder is modeled
by randomly displacing each dipole in the geometry. The new random positions are sampled
according to a 3D Gaussian centered at the unperturbed dipole position with a standard deviation
of D · d, where the parameter D is used to quantify the degree of fabrication errors relative to the
inter-array separation. The results of these simulations are presented in Fig. 7. The simulations
indicate robustness of the predicted moiré flat bands against the effect of positional disorder up
to a critical threshold of the disorder parameter D = 10%. Our simulations indicate that for
fabrication errors within this tolerance, the desired effect of strong field enhancement will largely
persist. Outside of this regime, we observe the broadening and ultimate disappearance of moiré
flat bands as the structure deviates too strongly from perfect regularity.
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Fig. 7. Approximate low-loss (G(k)<0.1) band structure for strongly coupled d = 0.1λ0
arrays with Λ1 = 0.3λ0 and θ = 3/4 under the influence of positional disorder (described
in the main text). The finite, perfectly ordered moiré setup is composed of 30 unit cells.
The prediction of flat bands according to Eqns. (59) and (60) and the corresponding strong
enhancement of the DOS is expected to become invalid for positional disorder parameters of
D> = 10%.
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