16 research outputs found

    A formal classification of the Lygeum spartum vegetation of the Mediterranean Region

    Get PDF
    Aims We examined local and regional contribution on the grasslands dominated by Lygeum spartum from Southern Europe and North Africa to produce a formalised classification of this vegetation and to identify main factors driving its plant species composition. Location Mediterranean Basin and Iberian Peninsula. Methods We used a dataset of 728 relevĂ©s, which were resampled to reduce unbalanced sampling effort, resulting in a dataset of 568 relevĂ©s and 846 taxa. We classified the plots by TWINSPAN, interpreted the resulting pools, and used them to develop formal definitions of phytosociological alliances characterised by L. spartum vegetation. The definitions were included in an expert system to assist automatic vegetation classification. We related the alliances to climatic factors and described their biogeographical features and ecological preferences. The floristic relationships between these alliances were analysed and visualised using distance‐based redundancy analysis. Results We defined eleven alliances of L. spartum vegetation, including the newly described Launaeo laniferae‐Lygeion sparti from SW Morocco and the Noaeo mucronatae‐Lygeion sparti from the Algerian highlands and NE Morocco. Biogeographical, climatic, and edaphic factors were revealed as putatively driving the differentiation between the alliances. The vegetation of clayey slopes and inland salt basins displayed higher variability in comparison with those of coastal salt marshes. Main conclusions The most comprehensive formal classification, accompanied by an expert system, of the L. spartum vegetation was formulated. The expert system, containing the formal definitions of the phytosociological alliances, will assist in identification of syntaxonomic position of new datasets

    Comparative Assessment of Goods and Services Provided by Grazing Regulation and Reforestation in Degraded Mediterranean Rangelands

    Get PDF
    Several management actions are applied to restore ecosystem services in degraded Mediterranean rangelands, which range from adjusting the grazing pressure to the removal of grazers and pine plantations. Four such actions were assessed in Quercus coccifera L. shrublands in northern Greece: (i) moderate grazing by goats and sheep; (ii) no grazing; (iii) no grazing plus pine (Pinus pinaster Aiton) plantation in forest gaps (gap reforestation); and (iv) no grazing plus full reforestation of shrubland areas, also with P. pinaster. In addition, heavy grazing was also assessed to serve as a control action. We comparatively assessed the impact of these actions on key provisioning, regulating and supporting ecosystem services by using ground-based indicators. Depending on the ecosystem service considered, the management actions were ranked differently. However, the overall provision of services was particularly favoured under moderate and no grazing management options, with moderate grazing outranking any other action in provisioning services and the no grazing action presenting the most balanced provision of services. Pine reforestations largely contributed to water and soil conservation and C sequestration but had a negative impact on plant diversity when implemented at the expense of removing natural vegetation in the area. Heavy grazing had the lowest provision of ecosystem services. It is concluded that degraded rangelands can be restored by moderating the grazing pressure rather than completely banning livestock grazing or converting them into pine plantations.This research is part of the European Union’s Seventh Framework Programme (FP7/2007-2013) and Support Action PRACTICE (Prevention and Restoration Actions to Combat Desertification: An Integrative assessment—grant agreement no. 226828). The research of S. B., A. G. M. and V. R. V. has received funding from the projects CASCADE (funded by EU-FP7; grant agreement no. 283068), GRACCIE (CSD2007-00067, funded by the Spanish Ministry of Innovation and Science, Consolider-Ingenio 2010 Program) and SFUN (CGL2011-30515-C02-00, funded by the Spanish Ministry of Economy and Competitiveness)
    corecore