47 research outputs found

    Polarized far-infrared and Raman spectra of SrCuO2 single crystals

    Full text link
    We measured polarized far-infrared reflectivity and Raman scattering spectra of SrCuO2_2 single crystals. The frequencies for infrared-active modes were determined using an oscillator-fitting procedure of reflectivity data. The Raman spectra were measured at different temperatures using several laser energies ωL\omega_L. In addition to eight of twelve Raman active modes, predicted by factor-group analysis, we observed a complex structure in the Raman spectra for polarization parallel to the {\bf c}-axis, which consists of Raman-allowed Ag_g symmetry modes, and B1u_{1u} LO infrared-active (Raman-forbidden) modes of the first and higher order as well as their combinations. The Raman-forbidden modes have a stronger intensity at higher ωL\omega_L than the Raman-allowed ones. In order to explain this resonance effect, we measured the dielectric function and optical reflection spectra of SrCuO2_2 in the visible range. We show that the Raman-allowed Ag_g symmetry modes are resonantly enhanced when a laser energy is close to E0E_0, while Raman-forbidden (IR-active) modes resonate strongly for laser line energies close to the electronic transition of higher energy gaps.Comment: to be published in Physica

    Determinative Role of the Jahn-Teller Disorder in the Raman Scattering of Mixed-Valence Manganites

    Full text link
    The mixed-valence perovskitelike manganites are characterized by unique interrelation of Jahn-Teller distortions, electric and magnetic properties. The Jahn-Teller distortion follows the Mn(3+)->Mn(4+) charge transfer with some delay. Its development depends on the lifetime of Mn in (3+) state, governed by the Mn(4+)/Mn(3+) ratio and magnetic correlation. The non-coherence of Jahn-Teller distortions in orthorhombic mixed-valence manganites and rhombohedral RMnO3 (R = rare earth) results in oxygen disorder. We demonstrate that the Raman spectra in this case are dominated by disorder-induced bands reflecting the oxygen partial phonon density of states (PDOS). The PDOS origin of the main Raman bands in insulating phases of such compounds is evidenced by the similar lineshape of experimental spectra and calculated smeared PDOS and disappearance of the PDOS bands in ordered ferromagnetic metallic phase.Comment: 4 pages, 3 figure

    Comparative Raman Studies of Sr2RuO4, Sr3Ru2O7 and Sr4Ru3O10

    Full text link
    The polarized Raman spectra of layered ruthenates of the Srn+1RunO3n+1 (n=1,2,3) Ruddlesden-Popper series were measured between 10 and 300 K. The phonon spectra of Sr3Ru2O7 and Sr4Ru3O10 confirmed earlier reports for correlated rotations of neighboring RuO6 octahedra within double or triple perovskite blocks. The observed Raman lines of Ag or B1g symmetry were assigned to particular atomic vibrations by considering the Raman modes in simplified structures with only one double or triple RuO6 layer per unit cell and by comparison to the predictions of lattice dynamical calculations for the real Pban and Pbam structures. Along with discrete phonon lines, a continuum scattering, presumably of electronic origin, is present in the zz, xx and xy, but not in the x'y' and zx spectra. Its interference with phonons results in Fano shape for some of the lines in the xx and xy spectra. The temperature dependencies of phonon parameters of Sr3Ru2O7 exhibit no anomaly between 10 and 300 K where no magnetic transition occurs. In contrast, two B1g lines in the spectra of Sr4Ru3O10, corresponding to oxygen vibrations modulating the Ru-O-Ru bond angle, show noticeable hardening with ferromagnetic ordering at 105 K, thus indicating strong spin-phonon interaction.Comment: 9 pages, 12 figure

    Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: Influence of the preparation method

    Get PDF
    Cataloged from PDF version of article.Gold catalysts based on ceria, doped by various RE metals (La, Sm, Gd, Yb, Y) were studied. The influence of the preparation methods on structure, properties and catalytic activity in the WGS reaction was investigated. The catalysts' supports were prepared using two different methods: co-precipitation (CP) and mechanochemical activation (MA). The catalysts were tested in a wide temperature interval without and after reactivation. All samples were characterized using a combination of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS) and TPR. It was found that the catalytic activity of MA catalysts is higher than CP ones. The gold catalysts based on ceria doped by Yb and Sm exhibited the highest activity. After reactivation in air the MA samples almost kept the WGS activity same, while the CP catalysts increased it. The catalysts of a single- and double-phase structure are formed as a result of CP and MA preparation, respectively. There are no big differences in the gold particles size (2-3 nm) depending on dopants and on the preparation techniques. The RS spectra analysis indicates that most probably the oxygen vacancies are adjacent to Me(3+) dopant and the ceria structure seems to be better ordered than in the case of alumina as a dopant. There is no distinct correlation between reducibility and WGS activity. The XPS analysis disclose positively charged gold particles in addition to metallic gold within a surface region of fresh samples and only metallic gold on the samples after catalytic processing. There is no simple correlation between the concentration of Ce(3+) in the samples and their WGS activity. (C) 2009 Elsevier B.V. All rights reserved

    Phonons and Magnetic Excitations in Mott-Insulator LaTiO3_3

    Full text link
    The polarized Raman spectra of stoichiometric LaTiO3_3 (TN=150_N = 150 K) were measured between 6 and 300 K. In contrast to earlier report on half-metallic LaTiO3.02_{3.02}, neither strong background scattering, nor Fano shape of the Raman lines was observed. The high frequency phonon line at 655 cm1^{-1} exhibits anomalous softening below TN_N: a signature for structural rearrangement. The assignment of the Raman lines was done by comparison to the calculations of lattice dynamics and the nature of structural changes upon magnetic ordering are discussed. The broad Raman band, which appears in the antiferromagnetic phase, is assigned to two-magnon scattering. The estimated superexchange constant J=15.4±0.5J = 15.4\pm0.5 meV is in excellent agreement with the result of neutron scattering studies.Comment: 4 pages, 5 figure

    Optical studies of gap, hopping energies and the Anderson-Hubbard parameter in the zigzag-chain compound SrCuO2

    Full text link
    We have investigated the electronic structure of the zigzag ladder (chain) compound SrCuO2 combining polarized optical absorption, reflection, photoreflectance and pseudo-dielectric function measurements with the model calculations. These measurements yield an energy gap of 1.42 eV (1.77 eV) at 300 K along (perpendicular) to the Cu-O chains. We have found that the lowest energy gap, the correlation gap, is temperature independent. The electronic structure of this oxide is calculated using both the local-spin-density-approximation with gradient correction method, and the tight-binding theory for the correlated electrons. The calculated density of electronic states for non-correlated and correlated electrons shows quasi-one-dimensional character. The correlation gap values of 1.42 eV (indirect transition) and 1.88 eV (direct transition) have been calculated with the electron hopping parameters t = 0.30 eV (along a chain), t_yz = 0.12 eV (between chains) and the Anderson-Hubbard repulsion on copper sites U= 2.0 eV. We concluded that SrCuO_2 belongs to the correlated-gap insulators.Comment: 24 pages, 8 figures, to be published in Phys.Rev.

    Magnetic excitations in SrCu2O3: a Raman scattering study

    Full text link
    We investigated temperature dependent Raman spectra of the one-dimensional spin-ladder compound SrCu2O3. At low temperatures a two-magnon peak is identified at 3160+/-10 cm^(-1) and its temperature dependence analyzed in terms of a thermal expansion model. We find that the two-magnon peak position must include a cyclic ring exchange of J_cycl/J_perp=0.09-0.25 with a coupling constant along the rungs of J_perp approx. 1215 cm^(-1) (1750 K) in order to be consistent with other experiments and theoretical results.Comment: 4 pages, 3 figure

    Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: Influence of the preparation method

    Get PDF
    Gold catalysts based on ceria, doped by various RE metals (La, Sm, Gd, Yb, Y) were studied. The influence of the preparation methods on structure, properties and catalytic activity in the WGS reaction was investigated. The catalysts' supports were prepared using two different methods: co-precipitation (CP) and mechanochemical activation (MA). The catalysts were tested in a wide temperature interval without and after reactivation. All samples were characterized using a combination of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS) and TPR. It was found that the catalytic activity of MA catalysts is higher than CP ones. The gold catalysts based on ceria doped by Yb and Sm exhibited the highest activity. After reactivation in air the MA samples almost kept the WGS activity same, while the CP catalysts increased it. The catalysts of a single- and double-phase structure are formed as a result of CP and MA preparation, respectively. There are no big differences in the gold particles size (2-3 nm) depending on dopants and on the preparation techniques. The RS spectra analysis indicates that most probably the oxygen vacancies are adjacent to Me3+ dopant and the ceria structure seems to be better ordered than in the case of alumina as a dopant. There is no distinct correlation between reducibility and WGS activity. The XPS analysis disclose positively charged gold particles in addition to metallic gold within a surface region of fresh samples and only metallic gold on the samples after catalytic processing. There is no simple correlation between the concentration of Ce3+ in the samples and their WGS activity. © 2009 Elsevier B.V. All rights reserved

    Magnetic and Charge Correlations in La{2-x-y}Nd_ySr_xCuO_4: Raman Scattering Study

    Full text link
    Two aspects in connection with the magnetic properties of La_{2-x-y}Nd_ySr_xCuO_4 single crystals are discussed. The first is related to long wavelength magnetic excitations in x = 0, 0.01, and 0.03 La_{2-x}Sr_xCuO_4 detwinned crystals as a function of doping, temperature and magnetic field. Two magnetic modes were observed within the AF region of the phase diagram. The one at lower energies was identified with the spin-wave gap induced by the antisymmetric DM interaction and its anisotropic properties in magnetic field could be well explained using a canonical form of the spin Hamiltonian. A new finding was a magnetic field induced mode whose dynamics allowed us to discover a spin ordered state outside the AF order which was shown to persist in a 9 T field as high as 100 K above the N\'eel temperature T_N for x = 0.01. For these single magnon excitations we map out the Raman selection rules in magnetic fields and demonstrate that their temperature dependent spectral weight is peaked at the N\'eel temperature. The second aspect is related to phononic and magnetic Raman scattering in La_{2-x-y}Nd_ySr_xCuO_4 with three doping concentrations: x = 1/8, y = 0; x = 1/8, y = 0.4; and x = 0.01, y = 0. We observed that around 1/8 Sr doping and independent of Nd concentration there exists substantial disorder in the tilt pattern of the CuO_6 octahedra in both the orthorhombic and tetragonal phases which persist down to 10 K and are coupled to bond disorder in the cation layers. The weak magnitude of existing charge/spin modulations in the Nd doped structure did not allow us to detect specific Raman signatures on lattice dynamics or two-magnon scattering around 2200 cm-1.Comment: 26 pages, 22 figure

    Nonlinear phononics: A new ultrafast route to lattice control

    Full text link
    To date, two types of coupling between electromagnetic radiation and a crystal lattice have been identified experimentally. One is direct, for infrared (IR)-active vibrations that carry an electric dipole. The second is indirect, it occurs through intermediate excitation of the electronic system via electron-phonon coupling, as in stimulated Raman scattering. Nearly 40 years ago, proposals were made of a third path, referred to as ionic Raman scattering (IRS). It was posited that excitation of an IR-active phonon could serve as the intermediate state for a Raman scattering process relying on lattice anharmonicity as opposed to electron phonon interaction. In this paper, we report an experimental demonstration of ionic Raman scattering and show that this mechanism is relevant to optical control in solids. The key insight is that a rectified phonon field can exert a directional force onto the crystal, inducing an abrupt displacement of the atoms from the equilibrium positions that could not be achieved through excitation of an IR-active vibration alone, for which the force is oscillatory. IRS opens up a new direction for the coherent control of solids in their electronic ground state, different from approaches that rely on electronic excitations.Comment: 10 manuscript pages, 3 figure
    corecore