81,606 research outputs found
Performance characteristics of wind profiling radars
Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages
Comparative study of the electron- and positron-atom bremsstrahlung
Fully relativistic treatment of the electron-atom and positron-atom
bremsstrahlung is reported. The calculation is based on the partial-wave
expansion of the Dirac scattering states in an external atomic field. A
comparison of the electron and positron bremsstrahlung is presented for the
single and double differential cross sections and the Stokes parameters of the
emitted photon. It is demonstrated that the electron-positron symmetry of the
bremsstrahlung spectra, which is nearly exact in the nonrelativistic regime, is
to a large extent removed by the relativistic effects
Electron-phonon coupling and superconductivity-induced distortion of the phonon lineshape in VSi
Phonon measurements in the A15-type superconductors were complicated in the
past because of the unavailability of large single crystals for inelastic
neutron scattering, e.g., in the case of NbSn, or unfavorable neutron
scattering properties in the case of VSi. Hence, only few studies of the
lattice dynamical properties with momentum resolved methods were published, in
particular below the superconducting transition temperature . Here, we
overcome these problems by employing inelastic x-ray scattering and report a
combined experimental and theoretical investigation of lattice dynamics in
VSi with the focus on the temperature-dependent properties of low-energy
acoustic phonon modes in several high-symmetry directions. We paid particular
attention to the evolution of the soft phonon mode of the structural phase
transition observed in our sample at , i.e., just above the
measured superconducting phase transition at . Theoretically,
we predict lattice dynamics including electron-phonon coupling based on
density-functional-perturbation theory and discuss the relevance of the soft
phonon mode with regard to the value of . Furthermore, we explain
superconductivityinduced anomalies in the lineshape of several acoustic phonon
modes using a model proposed by Allen et al., [Phys. Rev. B 56, 5552 (1997)]
FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search
We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for
\textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search
system for ultra-high dimensional datasets on a single machine, that does not
require similarity computations and is tailored for high-performance computing
platforms. By leveraging a LSH style randomized indexing procedure and
combining it with several principled techniques, such as reservoir sampling,
recent advances in one-pass minwise hashing, and count based estimations, we
reduce the computational and parallelization costs of similarity search, while
retaining sound theoretical guarantees.
We evaluate FLASH on several real, high-dimensional datasets from different
domains, including text, malicious URL, click-through prediction, social
networks, etc. Our experiments shed new light on the difficulties associated
with datasets having several million dimensions. Current state-of-the-art
implementations either fail on the presented scale or are orders of magnitude
slower than FLASH. FLASH is capable of computing an approximate k-NN graph,
from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than
10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam
dataset, using brute-force (), will require at least 20 teraflops. We
provide CPU and GPU implementations of FLASH for replicability of our results
Multiferroicity and colossal magneto-capacitance in Cr-thiospinels
The sulfur based Cr-spinels RCr2S4 with R = Cd and Hg exhibit the coexistence
of ferromagnetic and ferroelectric properties together with a pronounced
magnetocapacitive coupling. While in CdCr2S4 purely ferromagnetic order is
established, in HgCr2S4 a bond-frustrated magnetic ground state is realized,
which, however, easily can be driven towards a ferromagnetic configuration in
weak magnetic fields. This paper shall review our recent investigation for both
compounds. Besides the characterization of the magnetic properties, the complex
dielectric permittivity was studied by means of broadband dielectric
spectroscopy as well as measurements of polarization hysteresis and
pyro-currents. The observed colossal magneto-capacitive effect at the magnetic
transition seems to be driven by an enormous variation of the relaxation
dynamics.Comment: 10 pages, 11 figure
Classical versus Quantum Time Evolution of Densities at Limited Phase-Space Resolution
We study the interrelations between the classical (Frobenius-Perron) and the
quantum (Husimi) propagator for phase-space (quasi-)probability densities in a
Hamiltonian system displaying a mix of regular and chaotic behavior. We focus
on common resonances of these operators which we determine by blurring
phase-space resolution. We demonstrate that classical and quantum time
evolution look alike if observed with a resolution much coarser than a Planck
cell and explain how this similarity arises for the propagators as well as
their spectra. The indistinguishability of blurred quantum and classical
evolution implies that classical resonances can conveniently be determined from
quantum mechanics and in turn become effective for decay rates of quantum
correlations.Comment: 10 pages, 3 figure
Pathways to double ionization of atoms in strong fields
We discuss the final stages of double ionization of atoms in a strong
linearly polarized laser field within a classical model. We propose that all
trajectories leading to non-sequential double ionization pass close to a saddle
in phase space which we identify and characterize. The saddle lies in a two
degree of freedom subspace of symmetrically escaping electrons. The
distribution of longitudinal momenta of ions as calculated within the subspace
shows the double hump structure observed in experiments. Including a symmetric
bending mode of the electrons allows us to reproduce the transverse ion
momenta. We discuss also a path to sequential ionization and show that it does
not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version
accepted for publication in Phys. Rev.
- …
