8,044 research outputs found
Recommended from our members
Temperature dependence of parasitic infection and gut bacterial communities in bumble bees
Diabetes Numeracy: An overlooked factor in understanding racial disparities in glycemic control
OBJECTIVE:
Understanding the reasons and eliminating the pervasive health disparities in diabetes is a major research, clinical, and health policy goal. We examined whether health literacy, general numeracy, and diabetes-related numeracy explain the association between African American race and poor glycemic control (A1C) in patients with diabetes.
RESEARCH DESIGN AND METHODS:
Adults with type 2 diabetes (n = 383) were enrolled in a cross-sectional study at primary care and diabetes clinics at three medical centers. Data collected included the following: self-reported race, health literacy, general numeracy, diabetes-related numeracy, A1C, and sociodemographic factors. A series of structural equation models were estimated to explore the interrelations between variables and test for mediation.
RESULTS:
In model 1, younger age (r = -0.21, P < 0.001), insulin use (r = 0.27, P < 0.001), greater years with diabetes (r = 0.16, P < 0.01), and African American race (r = 0.12, P < 0.01) were all associated with poorer glycemic control. In model 2, diabetes-related numeracy emerged as a strong predictor of A1C (r = -0.46, P < 0.001), reducing the association between African American and poor glycemic control to nonsignificance (r = 0.10, NS). In model 3, African American race and older age were associated with lower diabetes-related numeracy; younger age, insulin use, more years with diabetes, and lower diabetes-related numeracy were associated with poor glycemic control.
CONCLUSIONS:
Diabetes-related numeracy reduced the explanatory power of African American race, such that low diabetes-related numeracy, not African American race, was significantly related to poor glycemic control. Interventions that address numeracy could help to reduce racial disparities in diabetes
Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media
We report the results of a study of multiphase flow in porous media. A
Darcy's law for steady multiphase flow was investigated for both binary and
ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager
reciprocity were shown to be a good approximation of the simulation data. The
dependence of the relative permeability coefficients on water saturation was
investigated and showed good qualitative agreement with experimental data.
Non-steady state invasion flows were investigated, with particular interest in
the asymptotic residual oil saturation. The addition of surfactant to the
invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.
Simulating Three-Dimensional Hydrodynamics on a Cellular-Automata Machine
We demonstrate how three-dimensional fluid flow simulations can be carried
out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for
cellular-automata computations. The principal algorithmic innovation is the use
of a lattice-gas model with a 16-bit collision operator that is specially
adapted to the machine architecture. It is shown how the collision rules can be
optimized to obtain a low viscosity of the fluid. Predictions of the viscosity
based on a Boltzmann approximation agree well with measurements of the
viscosity made on CAM-8. Several test simulations of flows in simple geometries
-- channels, pipes, and a cubic array of spheres -- are carried out.
Measurements of average flux in these geometries compare well with theoretical
predictions.Comment: 19 pages, REVTeX and epsf macros require
Fisher's arrow of `time' in cosmological coherent phase space
Fisher's arrow of `time' in a cosmological phase space defined as in quantum
optics (i.e., whose points are coherent states) is introduced as follows.
Assuming that the phase space evolution of the universe starts from an initial
squeezed cosmological state towards a final thermal one, a Fokker-Planck
equation for the time-dependent, cosmological Q phase space probability
distribution can be written down. Next, using some recent results in the
literature, we derive an information arrow of time for the Fisher phase space
cosmological entropy based on the Q function. We also mention the application
of Fisher's arrow of time to stochastic inflation modelsComment: 10 pages, LaTex, Honorable Mention at GRF-199
Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics
We investigate the dynamical behavior of binary fluid systems in two
dimensions using dissipative particle dynamics. We find that following a
symmetric quench the domain size R(t) grows with time t according to two
distinct algebraic laws R(t) = t^n: at early times n = 1/2, while for later
times n = 2/3. Following an asymmetric quench we observe only n = 1/2, and if
momentum conservation is violated we see n = 1/3 at early times. Bubble
simulations confirm the existence of a finite surface tension and the validity
of Laplace's law. Our results are compared with similar simulations which have
been performed previously using molecular dynamics, lattice-gas and
lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative
particle dynamics is a promising method for simulating fluid properties in such
systems.Comment: RevTeX; 22 pages, 5 low-resolution figures. For full-resolution
figures, connect to http://www.tcm.phy.cam.ac.uk/~ken21/tension/tension.htm
Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers.
Benzene exposure causes acute myeloid leukemia and hematotoxicity, shown as suppression of mature blood and myeloid progenitor cell numbers. As the leukemia-related aneuploidies monosomy 7 and trisomy 8 previously had been detected in the mature peripheral blood cells of exposed workers, we hypothesized that benzene could cause leukemia through the induction of these aneuploidies in hematopoietic stem and progenitor cells. We measured loss and gain of chromosomes 7 and 8 by fluorescence in situ hybridization in interphase colony-forming unit-granulocyte-macrophage (CFU-GM) cells cultured from otherwise healthy benzene-exposed (n=28) and unexposed (n=14) workers. CFU-GM monosomy 7 and 8 levels (but not trisomy) were significantly increased in subjects exposed to benzene overall, compared with levels in the control subjects (P=0.0055 and P=0.0034, respectively). Levels of monosomy 7 and 8 were significantly increased in subjects exposed to <10 p.p.m. (20%, P=0.0419 and 28%, P=0.0056, respectively) and ≥ 10 p.p.m. (48%, P=0.0045 and 32%, 0.0354) benzene, compared with controls, and significant exposure-response trends were detected (P(trend)=0.0033 and 0.0057). These data show that monosomies 7 and 8 are produced in a dose-dependent manner in the blood progenitor cells of workers exposed to benzene, and may be mechanistically relevant biomarkers of early effect for benzene and other leukemogens
Holonomy invariance, orbital resonances, and kilohertz QPOs
Quantized orbital structures are typical for many aspects of classical
gravity (Newton's as well as Einstein's). The astronomical phenomenon of
orbital resonances is a well-known example. Recently, Rothman, Ellis and
Murugan (2001) discussed quantized orbital structures in the novel context of a
holonomy invariance of parallel transport in Schwarzschild geometry. We present
here yet another example of quantization of orbits, reflecting both orbital
resonances and holonomy invariance. This strong-gravity effect may already have
been directly observed as the puzzling kilohertz quasi-periodic oscillations
(QPOs) in the X-ray emission from a few accreting galactic black holes and
several neutron stars
Holonomy in the Schwarzschild-Droste Geometry
Parallel transport of vectors in curved spacetimes generally results in a
deficit angle between the directions of the initial and final vectors. We
examine such holonomy in the Schwarzschild-Droste geometry and find a number of
interesting features that are not widely known. For example, parallel transport
around circular orbits results in a quantized band structure of holonomy
invariance. We also examine radial holonomy and extend the analysis to spinors
and to the Reissner-Nordstr\"om metric, where we find qualitatively different
behavior for the extremal () case. Our calculations provide a toolbox
that will hopefully be useful in the investigation of quantum parallel
transport in Hilbert-fibered spacetimes.Comment: 18 Latex pages, 3 figures. Second replacement. This version as
published in CQG with some misprints correcte
Lattice Boltzmann simulations of lamellar and droplet phases
Lattice Boltzmann simulations are used to investigate spinodal decomposition
in a two-dimensional binary fluid with equilibrium lamellar and droplet phases.
We emphasise the importance of hydrodynamic flow to the phase separation
kinetics. For mixtures slightly asymmetric in composition the fluid phase
separates into bulk and lamellar phases with the lamellae forming distinctive
spiral structures to minimise their elastic energy.Comment: 19 pages, 5 figure
- …