62,453 research outputs found

    PQCD Analysis of Parton-Hadron Duality

    Full text link
    We propose an extraction of the running coupling constant of QCD in the infrared region from experimental data on deep inelastic inclusive scattering at Bjorken x -> 1. We first attempt a perturbative fit of the data that extends NLO PQCD evolution to large x values and final state invariant mass, W, in the resonance region. We include both target mass corrections and large x resummation effects. These effects are of order O(1/Q^2), and they improve the agreement with the Q^2 dependence of the data. Standard analyses require the presence of additional power corrections, or dynamical higher twists, to achieve a fully quantitative fit. Our analysis, however, is regulated by the value of the strong coupling in the infrared region that enters through large x resummation effects, and that can suppress, or absorb, higher twist effects. Large x data therefore indirectly provide a measurement of this quantity that can be compared to extractions from other observables.Comment: 10 pages, 3 figure

    Multibody Interplanetary Swingby Trajectories /MIST-1/

    Get PDF
    Computer program incorporates new isolation procedure to determine interplanetary trajectories which utilize a maximum of three flybys. Program also computes singe planet flybys and direct transfer trajectories. The three principle systems employed in MIST-1 use as their fundamental plane the mean plane of the earth's orbit around the sun

    A positive taper traveling-wave tube

    Get PDF
    Synchronism can be maintained between the RF beam current and the circuit electromagnetic waves over substantially the entire length of a traveling-wave tube by increasing the pitch of the last portion of the helical wave structure. There is no loss of linearity or beam conversion efficiency

    Three-dimensionality in quasi-two dimensional flows: recirculations and barrel effects

    Get PDF
    A scenario is put forward for the appearance of three-dimensionality both in quasi-2D rotating flows and quasi-2D magnetohydrodynamic (MHD) flows. We show that 3D recirculating flows and currents originate in wall boundary layers and that, unlike in ordinary hydrodynamic flows, they cannot be ignited by confinement alone. They also induce a second form of three-dimensionality with quadratic variations of velocities and current across the channel. This scenario explains both the common tendency of these flows to two-dimensionality and the mechanisms of the recirculations through a single formal analogy covering a wide class of flow including rotating and MHD flows. These trans-disciplinary effects are thus active in atmospheres, oceans or the cooling blankets of nuclear fusion reactors.Comment: 6 pages, 1 Figur

    NASA/Pratt and Whitney experimental clean combustor program: Engine test results

    Get PDF
    A two-stage vorbix (vortex burning and mixing) combustor and associated fuel system components were successfully tested in an experimental JT9D engine at steady-state and transient operating conditions, using ASTM Jet-A fuel. Full-scale JT9D experimental engine tests were conducted in a phase three aircraft experimental clean combustor program. The low-pollution combustor, fuel system, and fuel control concepts were derived from phase one and phase two programs in which several combustor concepts were evaluated, refined, and optimized in a component test rig. Significant pollution reductions were achieved with the combustor which meets the performance, operating, and installation requirements of the engine

    Development of a 25 - 50 watt high efficiency, X-band, traveling wave tube Quarterly report, Nov. 1970 - Jan. 1971

    Get PDF
    Computer design technique of electron gun for use in spacecraft transmitter

    Experimental clean combustor program, phase 3

    Get PDF
    A two-stage vortex burning and mixing combustor and associated fuel system components were successfully tested at steady state and transient operating conditions. The combustor exceeded the program goals for all three emissions species, with oxides of nitrogen 10 percent below the goal, carbon monoxide 26 percent below the goal, and total unburned hydrocarbons 75 percent below the goal. Relative to the JT9D-7 combustor, the oxides of nitrogen were reduced by 58 percent, carbon monoxide emissions were reduced by 69 percent, and total unburned hydrocarbons were reduced by 9 percent. The combustor efficiency and exit temperature profiles were comparable to those of production combustor. Acceleration and starting characteristics were deficient relative to the production engine
    • …
    corecore