2,032 research outputs found

    Supersymmetry and a Time-Dependent Landau System

    Get PDF
    A general technique is outlined for investigating supersymmetry properties of a charged spin-\half quantum particle in time-varying electromagnetic fields. The case of a time-varying uniform magnetic induction is examined and shown to provide a physical realization of a supersymmetric quantum-mechanical system. Group-theoretic methods are used to factorize the relevant Schr\"odinger equations and obtain eigensolutions. The supercoherent states for this system are constructed.Comment: 47 pages, submitted to Phys. Rev. A, LaTeX, IUHET 243 and LA-UR-93-20

    Noether's Theorem and time-dependent quantum invariants

    Full text link
    The time dependent-integrals of motion, linear in position and momentum operators, of a quantum system are extracted from Noether's theorem prescription by means of special time-dependent variations of coordinates. For the stationary case of the generalized two-dimensional harmonic oscillator, the time-independent integrals of motion are shown to correspond to special Bragg-type symmetry properties. A detailed study for the non-stationary case of this quantum system is presented. The linear integrals of motion are constructed explicitly for the case of varying mass and coupling strength. They are obtained also from Noether's theorem. The general treatment for a multi-dimensional quadratic system is indicated, and it is shown that the time-dependent variations that give rise to the linear invariants, as conserved quantities, satisfy the corresponding classical homogeneous equations of motion for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares, UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994

    Simultaneous Comparison of Many Triphasic Defibrillation Waveforms

    Get PDF
    Biphasic defibrillation waveforms are now accepted as being more effective at terminating ventricular fibrillation (VF) than monophasic waveforms. If two phases are better than one, this naturally leads to the hypothesis that additional phases improve efficacy. This study tests the hypothesis by adding one additional phase. We examined the efficacy of 18 different triphasic waveforms simultaneously

    Evolution of squeezed states under the Fock-Darwin Hamiltonian

    Full text link
    We develop a complete analytical description of the time evolution of squeezed states of a charged particle under the Fock-Darwin Hamiltonian and a time-dependent electric field. This result generalises a relation obtained by Infeld and Pleba\'nski for states of the one-dimensional harmonic oscillator. We relate the evolution of a state-vector subjected to squeezing to that of state which is not subjected to squeezing and for which the time-evolution under the simple harmonic oscillator dynamics is known (e.g. an eigenstate of the Hamiltonian). A corresponding relation is also established for the Wigner functions of the states, in view of their utility in the analysis of cold-ion experiments. In an appendix, we compute the response functions of the FD Hamiltonian to an external electric field, using the same techniques as in the main text

    Equivariant differential characters and symplectic reduction

    Full text link
    We describe equivariant differential characters (classifying equivariant circle bundles with connections), their prequantization, and reduction

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table

    Cross-relaxation and phonon bottleneck effects on magnetization dynamics in LiYF4:Ho3+

    Full text link
    Frequency and dc magnetic field dependences of dynamic susceptibility in diluted paramagnets LiYF4_4:Ho3+^{3+} have been measured at liquid helium temperatures in the ac and dc magnetic fields parallel to the symmetry axis of a tetragonal crystal lattice. Experimental data are analyzed in the framework of microscopic theory of relaxation rates in the manifold of 24 electron-nuclear sublevels of the lowest non-Kramers doublet and the first excited singlet in the Ho3+^{3+} ground multiplet 5I8^5I_8 split by the crystal field of S4_4 symmetry. The one-phonon transition probabilities were computed using electron-phonon coupling constants calculated in the framework of exchange charge model and were checked by optical piezospectroscopic measurements. The specific features observed in field dependences of the in- and out-of-phase susceptibilities (humps and dips, respectively) at the crossings (anti-crossings) of the electron-nuclear sublevels are well reproduced by simulations when the phonon bottleneck effect and the cross-spin relaxation are taken into account

    Charged two-dimensional magnetoexciton and two-mode squeezed vacuum states

    Full text link
    A novel unitary transformation of the Hamiltonian that allows one to partially separate the center-of-mass motion for charged electron-hole systems in a magnetic field is presented. The two-mode squeezed oscillator states that appear at the intermediate stage of the transformation are used for constructing a trial wave function of a two-dimensional (2D) charged magnetoexciton.Comment: 9 pages, 1 figur

    f-Oscillators and Nonlinear Coherent States

    Get PDF
    The notion of f-oscillators generalizing q-oscillators is introduced. For classical and quantum cases, an interpretation of the f-oscillator is provided as corresponding to a special nonlinearity of vibration for which the frequency of oscillation depends on the energy. The f-coherent states (nonlinear coherent states) generalizing q-coherent states are constructed. Applied to quantum optics, photon distribution function, photon number means, and dispersions are calculated for the f-coherent states as well as the Wigner function and Q-function. As an example, it is shown how this nonlinearity may affect the Planck distribution formula.Comment: Latex, 32 pages, accepted by Physica Script

    Coherent states for the hydrogen atom: discrete and continuous spectra

    Get PDF
    We construct the systems of generalised coherent states for the discrete and continuous spectra of the hydrogen atom. These systems are expressed in elementary functions and are invariant under the SO(3,2)SO(3, 2) (discrete spectrum) and SO(4,1)SO(4, 1) (continuous spectrum) subgroups of the dynamical symmetry group SO(4,2)SO(4, 2) of the hydrogen atom. Both systems of coherent states are particular cases of the kernel of integral operator which interwines irreducible representations of the SO(4,2)SO(4, 2) group.Comment: 15 pages, LATEX, minor sign corrections, to appear in J.Phys.
    • …
    corecore