4,678 research outputs found
Associated Lam\'{E} Equation, Periodic Potentials and sl(2,R)
We propose a new approach based on the algebraization of the Associated
Lam\'{e} equation within sl(2,R) to
derive the corresponding periodic potentials. The band edge eigenfunctions and
energy spectra are explicitly obtained for integers m,. We also obtain
the explicit expressions of the solutions for half-integer m and integer or
half-integer .Comment: 8 pages, no figure, tex file(version 2.09
Forward Analysis and Model Checking for Trace Bounded WSTS
We investigate a subclass of well-structured transition systems (WSTS), the
bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete
deterministic ones, which we claim provide an adequate basis for the study of
forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth.
Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered
previously for the termination of forward analysis, boundedness is decidable.
Boundedness turns out to be a valuable restriction for WSTS verification, as we
show that it further allows to decide all -regular properties on the
set of infinite traces of the system
PSpectRe: A Pseudo-Spectral Code for (P)reheating
PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to
evolve interacting scalar fields in an expanding universe. PSpectRe is
optimized for the analysis of parametric resonance in the post-inflationary
universe, and provides an alternative to finite differencing codes, such as
Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and
fourth-order (Runge-Kutta) time integrators. Given the same number of spatial
points and/or momentum modes, PSpectRe is not significantly slower than finite
differencing codes, despite the need for multiple Fourier transforms at each
timestep, and exhibits excellent energy conservation. Further, by computing the
post-resonance equation of state, we show that in some circumstances PSpectRe
obtains reliable results while using substantially fewer points than a finite
differencing code. PSpectRe is designed to be easily extended to other problems
in early-universe cosmology, including the generation of gravitational waves
during phase transitions and pre-inflationary bubble collisions. Specific
applications of this code will be pursued in future work.Comment: 22 pages; source code for PSpectRe available:
http://easther.physics.yale.edu v2 Typos fixed, minor improvements to
wording; v3 updated as per referee comment
On algebraic classification of quasi-exactly solvable matrix models
We suggest a generalization of the Lie algebraic approach for constructing
quasi-exactly solvable one-dimensional Schroedinger equations which is due to
Shifman and Turbiner in order to include into consideration matrix models. This
generalization is based on representations of Lie algebras by first-order
matrix differential operators. We have classified inequivalent representations
of the Lie algebras of the dimension up to three by first-order matrix
differential operators in one variable. Next we describe invariant
finite-dimensional subspaces of the representation spaces of the one-,
two-dimensional Lie algebras and of the algebra sl(2,R). These results enable
constructing multi-parameter families of first- and second-order quasi-exactly
solvable models. In particular, we have obtained two classes of quasi-exactly
solvable matrix Schroedinger equations.Comment: LaTeX-file, 16 pages, submitted to J.Phys.A: Math.Ge
Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada
Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given
Quasi-Exact Solvability and the direct approach to invariant subspaces
We propose a more direct approach to constructing differential operators that
preserve polynomial subspaces than the one based on considering elements of the
enveloping algebra of sl(2). This approach is used here to construct new
exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line
which are not Lie-algebraic. It is also applied to generate potentials with
multiple algebraic sectors. We discuss two illustrative examples of these two
applications: an interesting generalization of the Lam\'e potential which
posses four algebraic sectors, and a quasi-exactly solvable deformation of the
Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure
A New Algebraization of the Lame Equation
We develop a new way of writing the Lame Hamiltonian in Lie-algebraic form.
This yields, in a natural way, an explicit formula for both the Lame
polynomials and the classical non-meromorphic Lame functions in terms of
Chebyshev polynomials and of a certain family of weakly orthogonal polynomialsComment: Latex2e with AMS-LaTeX and cite packages; 32 page
Minimal size of a barchan dune
Barchans are dunes of high mobility which have a crescent shape and propagate
under conditions of unidirectional wind. However, sand dunes only appear above
a critical size, which scales with the saturation distance of the sand flux [P.
Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002);
B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B {\bf{28,}} 321 (2002);
G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E {\bf{64,}} 31305
(2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys.
Rev. Lett. {\bf{89,}} 264301 (2002) that this flux fetch distance is itself
constant. Indeed, this could not explain the proto size of barchan dunes, which
often occur in coastal areas of high litoral drift, and the scale of dunes on
Mars. In the present work, we show from three dimensional calculations of sand
transport that the size and the shape of the minimal barchan dune depend on the
wind friction speed and the sand flux on the area between dunes in a field. Our
results explain the common appearance of barchans a few tens of centimeter high
which are observed along coasts. Furthermore, we find that the rate at which
grains enter saltation on Mars is one order of magnitude higher than on Earth,
and is relevant to correctly obtain the minimal dune size on Mars.Comment: 11 pages, 10 figure
Quantum and random walks as universal generators of probability distributions
Quantum walks and random walks bear similarities and divergences. One of the
most remarkable disparities affects the probability of finding the particle at
a given location: typically, almost a flat function in the first case and a
bell-shaped one in the second case. Here I show how one can impose any desired
stochastic behavior (compatible with the continuity equation for the
probability function) on both systems by the appropriate choice of time- and
site-dependent coins. This implies, in particular, that one can devise quantum
walks that show diffusive spreading without loosing coherence, as well as
random walks that exhibit the characteristic fast propagation of a quantum
particle driven by a Hadamard coin.Comment: 8 pages, 2 figures; revised and enlarged versio
- …
