2,190 research outputs found
Space station integrated wall design and penetration damage control
A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment
Space station integrated wall design and penetration damage control
The analysis code BUMPER executes a numerical solution to the problem of calculating the probability of no penetration (PNP) of a spacecraft subject to man-made orbital debris or meteoroid impact. The codes were developed on a DEC VAX 11/780 computer that uses the Virtual Memory System (VMS) operating system, which is written in FORTRAN 77 with no VAX extensions. To help illustrate the steps involved, a single sample analysis is performed. The example used is the space station reference configuration. The finite element model (FEM) of this configuration is relatively complex but demonstrates many BUMPER features. The computer tools and guidelines are described for constructing a FEM for the space station under consideration. The methods used to analyze the sensitivity of PNP to variations in design, are described. Ways are suggested for developing contour plots of the sensitivity study data. Additional BUMPER analysis examples are provided, including FEMs, command inputs, and data outputs. The mathematical theory used as the basis for the code is described, and illustrates the data flow within the analysis
Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support
Network slicing is a fundamental feature of 5G systems to partition a single
network into a number of segregated logical networks, each optimized for a
particular type of service, or dedicated to a particular customer or
application. The realization of network slicing is particularly challenging in
the Radio Access Network (RAN) part, where multiple slices can be multiplexed
over the same radio channel and Radio Resource Management (RRM) functions shall
be used to split the cell radio resources and achieve the expected behaviour
per slice. In this context, this paper describes the key design and
implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed
with slicing support. The testbed has been designed consistently with the
slicing capabilities and related management framework established by 3GPP in
Release 15. The testbed is used to demonstrate the provisioning of RAN slices
(e.g. preparation, commissioning and activation phases) and the operation of
the implemented RRM functionality for slice-aware admission control and
scheduling
Possible Magnetic Chirality in Optically Chiral Magnet [Cr(CN)][Mn()-pnH(HO)](HO) Probed by Muon Spin Rotation and Relaxation
Local magnetic fields in a molecule-based optically chiral magnet
[Cr(CN)][Mn()-pnH(HO)](HO) (GN-S) and its enantiomer (GN-R) are
studied by means of muon spin rotation and relaxation (muSR). Detailed analysis
of muon precession signals under zero field observed below T_c supports the
average magnetic structure suggested by neutron powder diffraction. Moreover,
comparison of muSR spectra between GN-S and GN-R suggests that they are a pair
of complete optical isomers in terms of both crystallographic and magnetic
structure. Possibility of magnetic chirality in such a pair is discussed.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Weak ferromagnetism with very large canting in a chiral lattice: (pyrimidine)2FeCl2
The transition metal coordination compound (pyrimidine)2FeCl2 crystallizes in
a chiral lattice, space group I 4_1 2 2 (or I4_3 2 2). Combined magnetization,
Mossbauer spectroscopy and powder neutron diffraction studies reveal that it is
a canted antiferromagnet below T_N = 6.4 K with an unusually large canting of
the magnetic moments of 14 deg. from their general antiferromagnetic alignment,
one of the largest reported to date. This results in weak ferromagnetism with a
ferromagnetic component of 1 mu_B. The large canting is due to the interplay
between the antiferromagnetic exchange interaction and the local single-ion
anisotropy in the chiral lattice. The magnetically ordered structure of
(pyrimidine)2FeCl2, however, is not chiral. The implications of these findings
for the search of molecule based materials exhibiting chiral magnetic ordering
is discussed.Comment: 6 pages, 5 figure
Flag-dipole spinors: On the dual structure derivation and , and symmetries
In this manuscript we report the flag-dipole spinors dual structure direct
definition and analyze the properties behind the corresponding operator which
generates such structure. This particular construction may be interesting for
cosmological, phenomenological and mathematical physics applications. In
addition, we analyse the behaviour of the flag-dipole spinors under action of
discrete symmetries, facing an \emph{unconventional} property encoded on
.Comment: 8 pages, 0 figure
Unlocking room-temperature bistable spin transition at the nanoscale: the synthesis of core@shell [Fe(NH 2 trz) 3 (NO 3 ) 2 ]@SiO 2 nanoparticles â€
In this work, we address the synthesis of stable spin-crossover nanoparticles capable of undergoing a hysteretic spin transition at room temperature. For this purpose, we use the reverse-micelle protocol to prepare naked [Fe(NH2trz)3](NO3)2 and core@shell [Fe(NH2trz)3](NO3)2@SiO2 nanoparticles. Through meticulous adjustment of synthetic parameters, we achieved nanoparticle sizes ranging from approximately 40 nm to 60 nm. Our findings highlight that [Fe(NH2trz)3](NO3)2 presents a modest thermal hysteresis of 7 K, which decreases by downsizing. Conversely, silica-coated nanoparticles with sizes of ca. 60 and 40 nm demonstrate a remarkable hysteretic response of approximately 30 K, switching their spin state around room temperature. Moreover, the presence of a SiO2 shell substantially enhances the nanoparticles’ stability against oxidation. In this context, the larger 60 nm [Fe(NH2trz)3](NO3)2@SiO2 hybrid remains stable in water for up to two hours, enabling the observation of an unreported water-induced spin transition after 30 min. Therefore, this work also introduces an intriguing avenue for inducing spin transitions through solvent exchange, underscoring the versatility and potential of these nanoparticles
On the generalized spinor classification: Beyond the Lounesto's Classification
In this paper we advance into a generalized spinor classification, based on
the so-called Lounesto's classification. The program developed here is based on
an existing freedom on the spinorial dual structures definition, which, in a
certain simple physical and mathematical limit, allows us to recover the usual
Lounesto's classification. The protocol to be accomplished here gives full
consideration in the understanding of the underlying mathematical structure, in
order to satisfy the quadratic algebraic relations known as Fierz-Pauli-Kofink
identities, and also to provide physical observables. As we will see, such
identities impose a given restriction on the number of possible spinorial
classes allowed in the classification. We also expose a mathematical device
known as \emph{Clifford's algebra deformation}, which ensures real spinorial
densities and holds the Fierz-Pauli-Kofink quadratic relations.Comment: 9 pages, 0 figure
- …