17 research outputs found
Opposing temperature dependence of the stretching response of single PEG and PNiPAM polymers
The response of switchable polymer blends and coatings to temperature variation is important for the development of high-performance materials. Although this has been well studied for bulk materials, a proper understanding at the molecular level, in particular for high stretching forces, is still lacking. Here we investigate the molecular details of the temperature-dependent elastic response of two widely used water-soluble polymers, namely, polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNiPAM) with a combined approach using atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) experiments and molecular dynamics (MD) simulations. SMFS became possible by the covalent attachment of long and defined single polymers featuring a functional end group. Most interestingly, varying the temperature produces contrasting effects for PEG and PNiPAM. Surprising as these results might occur at first sight, they can be understood with the help of MD simulations in explicit water. We find that hydration is widely underestimated for the mechanics of macromolecules and that a polymer chain has competing energetic and entropic elastic components. We propose to use the temperature dependence to quantify the energetic behavior for high stretching forces. This fundamental understanding of temperature-dependent single polymer stretching response might lead to innovations like fast switchable polymer blends and coatings with polymer chains that act antagonistically
Fast dynamic color switching in temperature-responsive plasmonic films
This research was supported by UK Engineering and Physical Sciences Research Council grants EP/G060649/1 and EP/L027151/1 , and ERC grant LINASS 320503 . F.B. thanks the supports from the Winton Programme for the Physics of Sustainability.Publisher PDFPeer reviewe
Fluid Flow Programming in Paper-Derived SilicaâPolymer Hybrids
In paper-based devices, capillary fluid flow is based on length-scale selective functional control within a hierarchical porous system. The fluid flow can be tuned by altering the paper preparation process, which controls parameters such as the paper grammage. Interestingly, the fiber morphology and nanoporosity are often neglected. In this work, porous voids are incorporated into paper by the combination of dense or mesoporous ceramic silica coatings with hierarchically porous cotton linter paper. Varying the silica coating leads to significant changes in the fluid flow characteristics, up to the complete water exclusion without any further fiber surface hydrophobization, providing new approaches to control fluid flow. Additionally, functionalization with redox-responsive polymers leads to reversible, dynamic gating of fluid flow in these hybrid paper materials, demonstrating the potential of length scale specific, dynamic, and external transport control
The Metallocene Battery: Ultrafast Electron Transfer Self Exchange Rate Accompanied by a Harmonic Height Breathing
The first allâmetallocene rechargeable battery consisting of polyâcobaltocenium/â and polyâferrocene/reduced graphene oxide composites as anode and cathode was prepared. The intrinsically fast ET selfâexchange rate of metallocenes was successfully combined with an efficient ionâpercolation achieved by molecular selfâassembly. The resulting battery materials show ideal Nernstian behavior, is thickness scalable up to >1.2 C cmâ»ÂČ, and exhibit high coulombic efficiency at ultrafast rates (200 A gâ»Âč). Using aqueous LiClOâ, the charge is carried exclusively by the anion. The ClOââ» intercalation is accompanied by a reciprocal height change of the active layers. Principally, volume changes in organic battery materials during charging/discharging are not desirable and represent a major safety issue. However, here, the individual height changes â due to ion breathing â are reciprocal and thus prohibiting any internal pressure buildâup in the closedâcell, leading to excellent cycling stability
Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications
This work was supported by a restricted research grant of Bayer AG
Herstellung funktionaler Blockcopolymerarchitekturen und OberflÀchenfunktionalisierung auf Basis redoxresponsiver und hybrider Polymere
Ziel der vorliegenden Arbeit war die Herstellung unterschiedlichster Blockcopolymerarchitekturen und die Funktionalisierung von OberflĂ€chen auf Basis redoxresponsiver und hybrider Polymere. Gerade im Hinblick auf die Nanowissenschaft werden Blockcopolymere aufgrund ihrer nahezu einzigartigen FĂ€higkeit in Lösung, wie auch im Bulk, strukturierte Materialien auf der Nanometerskala mit entsprechenden Anwendungspotentialen zu bilden, eine immer gröĂer werdende Rolle zugeschrieben. DarĂŒber hinaus können durch Modifikation von SubstratoberflĂ€chen mit funktionalen Polymeren die Eigenschaften dieser Materialien, speziell der Grenzschicht, verĂ€ndert und gezielt eingestellt werden. Durch Verwendung redoxresponsiver und hybrider Polymere können zudem Materialien mit zusĂ€tzlichen prĂ€keramischen, katalytischen, optoelektronischen und schaltbaren Eigenschaften entwickelt werden.
Synthesemöglichkeiten und Anwendungen von Blockcopolymeren, Metallopolymeren und oberflĂ€chengebundenen Polymersystemen werden unter anderem bezĂŒglich des aktuellen Standes der Forschung beschrieben. Die mittels anionischer Polymerisation synthetisierten, zumeist Ferrocen-basierten Blockcopolymerarchitekturen sowie die hieraus hergestellten hochgeordneten und mitunter redoxaktiven, porösen Materialien werden im ersten Teil der kumulativen Arbeit ausfĂŒhrlich beschrieben und diskutiert. Ebenfalls konnte ein Cobalt-basiertes Methacrylat mittels kontrolliert radikalischer Polymerisation in polymere Strukturen ĂŒberfĂŒhrt und neben der Charakterisierung der thermisch umgewandelten Materialien auch die Redox-Chemie beschrieben werden. Die Funktionalisierung von Cellulose-basierten Materialien mit Silizium- oder Ferrocen-basierten Polymeren durch Verwendung einer grafting-from Strategie (oberflĂ€cheninduzierte ATRP) wird im zweiten Teil demonstriert und die erhaltenen Materialien in Bezug auf potentielle Anwendungsmöglichkeiten im Bereich der Sensorik, Mikrofluidik oder als keramische Materialien diskutiert
Herstellung funktionaler Blockcopolymerarchitekturen und OberflÀchenfunktionalisierung auf Basis redoxresponsiver und hybrider Polymere
Ziel der vorliegenden Arbeit war die Herstellung unterschiedlichster Blockcopolymerarchitekturen und die Funktionalisierung von OberflĂ€chen auf Basis redoxresponsiver und hybrider Polymere. Gerade im Hinblick auf die Nanowissenschaft werden Blockcopolymere aufgrund ihrer nahezu einzigartigen FĂ€higkeit in Lösung, wie auch im Bulk, strukturierte Materialien auf der Nanometerskala mit entsprechenden Anwendungspotentialen zu bilden, eine immer gröĂer werdende Rolle zugeschrieben. DarĂŒber hinaus können durch Modifikation von SubstratoberflĂ€chen mit funktionalen Polymeren die Eigenschaften dieser Materialien, speziell der Grenzschicht, verĂ€ndert und gezielt eingestellt werden. Durch Verwendung redoxresponsiver und hybrider Polymere können zudem Materialien mit zusĂ€tzlichen prĂ€keramischen, katalytischen, optoelektronischen und schaltbaren Eigenschaften entwickelt werden.
Synthesemöglichkeiten und Anwendungen von Blockcopolymeren, Metallopolymeren und oberflĂ€chengebundenen Polymersystemen werden unter anderem bezĂŒglich des aktuellen Standes der Forschung beschrieben. Die mittels anionischer Polymerisation synthetisierten, zumeist Ferrocen-basierten Blockcopolymerarchitekturen sowie die hieraus hergestellten hochgeordneten und mitunter redoxaktiven, porösen Materialien werden im ersten Teil der kumulativen Arbeit ausfĂŒhrlich beschrieben und diskutiert. Ebenfalls konnte ein Cobalt-basiertes Methacrylat mittels kontrolliert radikalischer Polymerisation in polymere Strukturen ĂŒberfĂŒhrt und neben der Charakterisierung der thermisch umgewandelten Materialien auch die Redox-Chemie beschrieben werden. Die Funktionalisierung von Cellulose-basierten Materialien mit Silizium- oder Ferrocen-basierten Polymeren durch Verwendung einer grafting-from Strategie (oberflĂ€cheninduzierte ATRP) wird im zweiten Teil demonstriert und die erhaltenen Materialien in Bezug auf potentielle Anwendungsmöglichkeiten im Bereich der Sensorik, Mikrofluidik oder als keramische Materialien diskutiert
Ferrocene-Modified Block Copolymers for the Preparation of Smart Porous Membranes
The design of artificially generated channels featuring distinct remote-switchable functionalities is of critical importance for separation, transport control, and water filtration applications. Here, we focus on the preparation of block copolymers (BCPs) consisting of polystyrene-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) having molar masses in the range of 91 to 124 kg molâ1 with a PHEMA content of 13 to 21 mol %. The BCPs can be conveniently functionalized with redox-active ferrocene moieties by a postmodification protocol for the hydrophilic PHEMA segments. Up to 66 mol % of the hydroxyl functionalities can be efficiently modified with the reversibly redox-responsive units. For the first time, the ferrocene-containing BCPs are shown to form nanoporous integral asymmetric membranes by self-assembly and application of the non-solvent-induced phase separation (SNIPS) process. Open porous structures are evidenced by scanning electron microscopy (SEM) and water flux measurements, while efficient redox-switching capabilities are investigated after chemical oxidation of the ferrocene moieties. As a result, the porous membranes reveal a tremendously increased polarity after oxidation as reflected by contact angle measurements. Additionally, the initial water flux of the ferrocene-containing membranes decreased after oxidizing the ferrocene moieties because of oxidation-induced pore swelling of the membrane
POSS-Containing Polymethacrylates on Cellulose-Based Substrates: Immobilization and Ceramic Formation
The combination of cellulose-based materials and functional polymers is a promising
approach for the preparation of porous, biotemplated ceramic materials. Within this study, cellulose
substrates were functionalized with a surface-attached initiator followed by polymerization of
(3-methacryloxypropyl)heptaisobutyl-T8-silsesquioxane (MAPOSS) by means of surface-initiated
atom transfer radical polymerization (ATRP). Successful functionalization was proven by infrared
(IR) spectroscopy as well as by contact angle (CA) measurements. Thermal analysis of the
polymer-modified cellulose substrates in different atmospheres (nitrogen and air) up to 600 âŠC
led to porous carbon materials featuring the pristine fibre-like structure of the cellulose material as
shown by scanning electron microscopy (SEM). Interestingly, spherical, silicon-containing domains
were present at the surface of the cellulose-templated carbon fibres after further ceramisation
at 1600 âŠC, as investigated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction
(XRD) measurements
Functional Metalloblock Copolymers for the Preparation and In Situ Functionalization of Porous Silica Films
Stimuli-responsive mesoporous silica films were prepared by evaporation-induced self-assembly through the physical entrapment of a functional metalloblock copolymer structuring agent, which simultaneously served to functionalize the mesopore. After end-functionalization with a silane group, the applied functional metalloblock copolymers were covalently integrated into the silica mesopore wall. In addition, they were partly degraded after the formation of the mesoporous film, which enabled the precise design of accessible mesopores. These polymerâsilica hybrid materials exhibited remarkable and gating ionic permselectivity and offer the potential for highly precise pore filling design and combination with high-throughput printing techniques. This in situ functionalization strategy of mesoporous silica using responsive metalloblock copolymers has the potential to improve how we approach the design of complex architectures at the nanoscale for tailored transport. This functionalization strategy paves the way for a variety of technologies based on molecular transport in nanoscale pores, including separation, sensing, catalysis, and energy conversion