55 research outputs found

    On-farm comparison of different postharvest storage technologies in a maize farming system of Tanzania Central Corridor

    Get PDF
    Article purchased; Published online: 16 March 2018Seven methods for storing maize were tested and compared with traditional storage of maize in polypropylene bags. Twenty farmers managed the experiment under their prevailing conditions for 30 weeks. Stored grain was assessed for damage every six weeks. The dominant storage insect pests identified were the Maize weevil (Sitophilus zeamais) and the Red flour beetle (Tribolium castaneum). The moisture content of grain in hermetic conditions increased from 12.5 ± 0.2% at the start of storage to a range of 13.0 ± 0.2–13.5 ± 0.2% at 30 weeks. There was no significant difference (F = 87.09; P < 0.0001) regarding insect control and grain damage between hermetic storage and fumigation with insecticides. However, the insecticide treatment of polypropylene yarn (ZeroFly®) did not control the insect populations for the experimental period under farmers' management. Grain damage was significantly lower in hermetic storage and fumigated grain than ZeroFly® and polypropylene bags without fumigation. No significant difference in grain damage was found between airtight treatment alone and when combined with the use of insecticides. During storage, S. zeamais was predominant and could be of more economic importance than T. castaneum as far as maize damage is concerned. At 30 weeks, the germination rate of grain stored with insecticides or in hermetic storage (68.5 ± 3.6% to 81.4 ± 4.0%) had not significantly reduced from the rate before storage (F = 15.55; P < 0.0001) except in ZeroFly®, also in polypropylene bags without treatment. Even though such bags did not control storage pests, farmers still liked this cheap technology. Hermetic storage techniques can be recommended to farmers without the use of insecticides provided they are inexpensive, and the proper application of technologies is ensured

    Recherches sur la stéréo-isomérie des oximes de la para-bromo-toluquinone

    No full text
    Thèse Sc. Genève.Mode of access: Internet

    Maintained serum sodium in male ultra-marathoners : the role of fluid intake, vasopressin, and aldosterone in fluid and electrolyte regulation

    Full text link
    Exercise-associated hyponatremia (EAH) is a well know electrolyte disorder in endurance athletes. Although fluid overload is the most like etiology, recent studies, however, argued whether EAH is a disorder of vasopressin secretion. The aims of the present study were to investigate (i) the prevalence of EAH in male ultra-marathoners and (ii) whether fluid intake, aldosterone or vasopressin, as measured by copeptin, were associated with post-race serum sodium concentration ([Na+]). In 50 male ultra-marathoners in a 100 km ultra-marathon, serum [Na+], aldosterone, copeptin, serum and urine osmolality, and body mass were measured pre- and post-race. Fluid intake, renal function parameters and urine excretion were measured. No athlete developed EAH. Copeptin and aldosterone increased; a significant correlation was found between the change in copeptin and the change in serum [Na+], no correlation was found between aldosterone and serum [Na+]. Serum [Na+] increased by 1.6%; body mass decreased by 1.9 kg. The change in serum [Na+] and body mass correlated significantly and negatively. The fluid intake of ~ 0.58 l/h was positively related to the change in body mass and negatively to both post-race serum [Na+] and the change in serum [Na+]. We conclude that serum [Na+] was maintained by both the mechanisms of fluid intake and the hormonal regulation of vasopressin

    Sex differences in Ultra-Triathlon performance at increasing race distance

    Full text link
    It has been argued that women should be able to outrun men in ultra-endurance distances. The present study investigated the sex difference in overall race times and split times between elite female and male Ironman triathletes competing in Ironman Hawaii (3.8 km swimming, 180 km cycling, and 42.195 km running) and Double Iron ultra-triathletes (7.6 km swimming, 360 km cycling, and 84.4 km running). Data from 20,638 athletes, including 5,163 women and 15,475 men competing in Ironman Hawaii and from 143 women and 1,252 men competing in Double Iron ultra-triathlon races held worldwide between 1999 and 2011 were analyzed. In Ironman Hawaii, the sex difference in performance of the top three athletes remained unchanged during the period studied for overall race time. For Double Iron ultra-triathletes, the sex difference for the top three athletes remained unchanged for overall race time. Sex differences increased as endurance race distances increased and showed no changes over time. It appears that women are unlikely to close the gap in ultra-endurance performance with men in ultra-triathlons in the near future. Physiological (e.g., maximum oxygen uptake) and anthropometric characteristics (e.g., skeletal muscle mass) may set biological limits for women

    Fluid intake and changes in limb volumes in male ultra-marathoners: does fluid overload lead to peripheral oedema?

    Full text link
    An increase in body mass due to oedema has been previously described. The aim of this study was to investigate a potential association between both fluid and electrolyte intake and the formation of peripheral oedemas. Fluid and electrolyte intakes and the changes in limb volumes in 50 male 100-km ultra-marathoners were measured. Pre- and post-race serum sodium concentration ([Na(+)]), serum aldosterone concentration, serum copeptin concentration, serum and urine osmolality and body mass were determined. Fluid intake, renal function parameters and urinary output, as well as the changes of volume in the extremities, were measured. The changes of volume in the limbs were measured using plethysmography. Serum [Na(+)] increased by 1.6%; body mass decreased by 1.9 kg. Serum copeptin and aldosterone concentrations were increased. The change in serum copeptin concentration and the change in serum [Na(+)] correlated positively; the change in serum [Na(+)] and body mass correlated negatively. A mean fluid intake of 0.58 L/h was positively related to running speed and negatively to post-race serum [Na(+)]. Total fluid intake was positively related to the changes in both arm and lower leg volumes. Running speed was positively associated with the changes in arm and lower leg volumes; race time was related to the changes in serum copeptin or aldosterone concentrations. To conclude, fluid intake was related to the changes in limb volumes, where athletes with an increased fluid intake developed an increase in limb volumes
    • …
    corecore