20 research outputs found

    Countrywide mapping of shrub forest using multi-sensor data and bias correction techniques

    Full text link
    The continual increase of shrub forest in the Swiss Alps over the past few decades impacts biodiversity, forest succession and the protective function of forests. Therefore, up-to-date and area-wide information on its distribution is of great interest. To detect the shrub forest areas for the whole of Switzerland (41,285 km2), we developed an approach that uses Random Forest (RF), bias correction techniques and data from multiple remote sensing sources. Manual aerial orthoimage interpretation of shrub forest areas was conducted in a non-probabilistic way to derive initial training data. The multi-sensor and open access predictor data included digital terrain and vegetation height models obtained from Airborne Laser Scanning (ALS) and stereo-imagery, as well as Synthetic Aperture Radar (SAR) backscatter from Sentinel-1 and multispectral imagery from Sentinel-2. To mitigate the expected bias due to the training data sampling strategy, two techniques using RF probability estimates were tested to improve mapping accuracy. 1) an iterative and semi-automated active learning technique was used to generate further training data and 2) threshold-moving related object growing was applied. Both techniques facilitated the production of a shrub forest map for the whole of Switzerland at a spatial resolution of 10 m. An accuracy assessment was performed using independent data covering 7640 regularly distributed National Forest Inventory (NFI) plots. We observed the influence of the bias correction techniques and found higher accuracies after each performed iteration. The Mean Absolute Error (MAE) for the predicted shrub forest proportion was reduced from 6.04% to 2.68% while achieving a Mean Bias Error (MBE) of close to 0. The present study underscores the potential of combining multi-sensor data with bias correction techniques to provide cost-effective and accurate countrywide detection of shrub forest. Moreover, the map complements currently available NFI plot sample point data

    Accuracy and Consistency of Space-based Vegetation Height Maps for Forest Dynamics in Alpine Terrain

    Full text link
    Monitoring and understanding forest dynamics is essential for environmental conservation and management. This is why the Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 m. Its long update time of 6 years, however, limits the temporal analysis of forest dynamics. This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps in a cost-effective way. In this paper, we present an in-depth analysis of these methods for operational application in Switzerland. We generate annual, countrywide vegetation height maps at a 10-meter ground sampling distance for the years 2017 to 2020 based on Sentinel-2 satellite imagery. In comparison to previous works, we conduct a large-scale and detailed stratified analysis against a precise Airborne Laser Scanning reference dataset. This stratified analysis reveals a close relationship between the model accuracy and the topology, especially slope and aspect. We assess the potential of deep learning-derived height maps for change detection and find that these maps can indicate changes as small as 250 m2m^2. Larger-scale changes caused by a winter storm are detected with an F1-score of 0.77. Our results demonstrate that vegetation height maps computed from satellite imagery with deep learning are a valuable, complementary, cost-effective source of evidence to increase the temporal resolution for national forest assessments

    The Database of European Forest Insect and Disease Disturbances: DEFID2

    Get PDF
    [EN] Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of bio-diversity, could be increasingly compromised. Despite the relevance of these detri-mental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including se-verity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite- based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and dam-age metrics derived from them using the LandTrendr spectral–temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and pos-sible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics, and enhance their representation in land-climate models. Further data sharing is en-couraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc- opend ata/FOREST/DISTURBANCES/DEFID2/SIEC Joint Research Centre; European Commission, Grant/Award Number: 101059498; European Research Council, Grant/Award Number: 101039567; Ministry of Research, Innovation and Digitalization of Romania; LifeWatch— POC project, Grant/Award Number: 327/390003/06-11-202

    A spatially explicit database of wind disturbances in European forests over the period 2000-2018

    Get PDF
    Strong winds may uproot and break trees and represent a major natural disturbance for European forests. Wind disturbances have intensified over the last decades globally and are expected to further rise in view of the effects of climate change. Despite the importance of such natural disturbances, there are currently no spatially explicit databases of wind-related impact at a pan-European scale. Here, we present a new database of wind disturbances in European forests (FORWIND). FORWIND is comprised of more than 80 000 spatially delineated areas in Europe that were disturbed by wind in the period 2000-2018 and describes them in a harmonized and consistent geographical vector format. The database includes all major windstorms that occurred over the observational period (e.g. Gudrun, Kyrill, Klaus, Xynthia and Vaia) and represents approximately 30% of the reported damaging wind events in Europe. Correlation analyses between the areas in FORWIND and land cover changes retrieved from the Landsat-based Global Forest Change dataset and the MODIS Global Disturbance Index corroborate the robustness of FORWIND. Spearman rank coefficients range between 0.27 and 0.48 (p value < 0.05). When recorded forest areas are rescaled based on their damage degree, correlation increases to 0.54. Wind-damaged growing stock volumes reported in national inventories (FORESTORM dataset) are generally higher than analogous metrics provided by FORWIND in combination with satellite-based biomass and country-scale statistics of growing stock volume. The potential of FORWIND is explored for a range of challenging topics and scientific fields, including scaling relations of wind damage, forest vulnerability modelling, remote sensing monitoring of forest disturbance, representation of uprooting and breakage of trees in large-scale land surface models, and hydrogeological risks following wind damage. Overall, FORWIND represents an essential and open-access spatial source that can be used to improve the understanding, detection and prediction of wind disturbances and the consequent impacts on forest ecosystems and the land-atmosphere system. Data sharing is encouraged in order to continuously update and improve FORWIND

    Using Multitemporal Sentinel-1 C-band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland

    No full text
    Efficient methods to monitor forested areas help us to better understand their processes. To date, only a few studies have assessed the usability of multitemporal synthetic aperture radar (SAR) datasets in this context. Here we present an analysis of an unprecedented set of C-band observations of mixed temperate forests. We demonstrate the potential of using multitemporal C-band VV and VH polarisation data for monitoring phenology and classifying forests in northern Switzerland. Each SAR acquisition was first radiometrically terrain corrected using digital elevation model-based image simulations of the local illuminated area. The flattened backscatter values and the local area values were input to a temporal compositing process integrating backscatter values from ascending and descending tracks. The process used local resolution weighting of each input, producing composite backscatter values that strongly mitigated terrain-induced distortions. Several descriptors were calculated to show the seasonal variation of European beech (Fagus sylvatica), oak (Quercus robur, Quercus petraea) and Norway spruce (Picea abies) in C-band data. Using their distinct seasonal signatures, the timing of leaf emergence and leaf fall of the deciduous species were estimated and compared to available ground observations. Furthermore, classifications for the forest types ‘deciduous’ and ‘coniferous’ and the investigated species were implemented using random forest classifiers. The deciduous species backscatter was about 1 dB higher than spruce throughout the year in both polarisations. The forest types showed opposing seasonal backscatter behaviours. At VH, deciduous species showed higher backscatter in winter than in summer, whereas spruce showed higher backscatter in summer than in winter. In VV, this pattern was similar for spruce, while no distinct seasonal behaviour was apparent for the deciduous species. The time differences between the estimations and the ground observations of the phenological events were approximately within the error margin ( ± 12 days) of the temporal resolution. The classification performances were promising, with higher accuracies achieved for the forest types (OA of 86% and κ = 0.73) than for individual species (OA of 72% and κ = 0.58). These results show that multitemporal C-band backscatter data have significant potential to supplement optical remote sensing data for ecological studies and mapping of mixed temperate forests

    Mapping dominant leaf type based on combined Sentinel-1/-2 data – Challenges for mountainous countries

    Full text link
    Countrywide winter and summer Sentinel-1 (S1) backscatter data, cloud-free summer Sentinel-2 (S2) images, an Airborne Laser Scanning (ALS)-based Digital Terrain Model (DTM) and a forest mask were used to model and subsequently map Dominant Leaf Type (DLT) with the thematic classes broadleaved and coniferous trees for the whole of Switzerland. A novel workflow was developed that is robust, cost-efficient and highly automated using reference data from aerial image interpretation. Two machine learning approaches based on Random Forest (RF) and deep learning (UNET) for the whole country with three sets of predictor variables were applied. 24 subareas based on aspect and slope categories were applied to explore effects of the complex mountainous topography on model performances. The reference data split into training, validation and test data sets was spatially stratified using a 25 km regular grid. Model accuracies of both RF and UNET were generally highest with Kappa (K) around 0.95 when predictors were included from both S1/S2 and the topographic variables aspect, elevation and slope from the DTM. While only slightly lower accuracies were obtained when using S2 and DTM data, lowest accuracies were obtained when only predictors from S1 and DTM were included, with RF performing worse than UNET. While on countrywide level RF and UNET performed overall similarly, substantial differences in model performances, i.e. higher variances and lower accuracies, were found in subareas with northwest to northeast orientations. The combined use of S1/S2 and DTM predictors mitigated these problems related to topography and shadows and was therefore superior to the single use of S1 and DTM or S2 and DTM data. The comparison with independent National Forest Inventory (NFI) plot data demonstrated precisions of K around 0.6 in the predictions of DLT and indicated a trend of increasing deviations in mixed forests. A comparison with the Copernicus High Resolution Layer (HRL) DLT 2018 revealed overall higher map accuracies with the exception of pure broadleaved forest. Although, spatial patterns of DTL were overall similar, UNET performed better than RF in areas with a distinct DLT on forest stand level, with the largest differences occurring when only S1 and DTM data was used. In contrast, predictions obtained from RF were more accurate in mixed stands. This study goes beyond the case study level and meets the requirements of countrywide data sets, in particular regarding repeatability, updating, costs and characteristics of training data sets. The 10 m countrywide DLT maps add complementary and spatially explicit information to the existing NFI estimates and are thus highly relevant for forestry practice and other related fields

    Wide-area analysis-ready radar backscatter composites

    Full text link
    The benefits of composite products are well known to users of data from optical sensors: cloud-cleared composite reflectance or index products are commonly used as an analysis-ready data (ARD) layer. No analogous composite products are currently in widespread use that is based on spaceborne radar satellite backscatter signals. Here, we present a methodology to produce wide-area ARD composite backscatter images. They build on the existing heritage of geometrically and radiometrically terrain corrected level 1 products. By combining backscatter measurements of a single region seen from multiple satellite tracks (incl. ascending and descending), they are able to provide wide-area coverage with low latency. The analysis-ready composite backscatter maps provide flattened backscatter estimates that are geometrically and radiometrically corrected for slope effects. A mask layer annotating the local quality of the composite resolution is introduced. Multiple tracks are combined by weighting each observation by its local resolution, generating seamless wide-area backscatter maps suitable for applications ranging from wet snow monitoring to land cover classification or short-term change detection

    Using Multitemporal Sentinel-1 C-band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland

    No full text
    Efficient methods to monitor forested areas help us to better understand their processes. To date, only a few studies have assessed the usability of multitemporal synthetic aperture radar (SAR) datasets in this context. Here we present an analysis of an unprecedented set of C-band observations of mixed temperate forests. We demonstrate the potential of using multitemporal C-band VV and VH polarisation data for monitoring phenology and classifying forests in northern Switzerland. Each SAR acquisition was first radiometrically terrain corrected using digital elevation model-based image simulations of the local illuminated area. The flattened backscatter values and the local area values were input to a temporal compositing process integrating backscatter values from ascending and descending tracks. The process used local resolution weighting of each input, producing composite backscatter values that strongly mitigated terrain-induced distortions. Several descriptors were calculated to show the seasonal variation of European beech (Fagus sylvatica), oak (Quercus robur, Quercus petraea) and Norway spruce (Picea abies) in C-band data. Using their distinct seasonal signatures, the timing of leaf emergence and leaf fall of the deciduous species were estimated and compared to available ground observations. Furthermore, classifications for the forest types ‘deciduous’ and ‘coniferous’ and the investigated species were implemented using random forest classifiers. The deciduous species backscatter was about 1 dB higher than spruce throughout the year in both polarisations. The forest types showed opposing seasonal backscatter behaviours. At VH, deciduous species showed higher backscatter in winter than in summer, whereas spruce showed higher backscatter in summer than in winter. In VV, this pattern was similar for spruce, while no distinct seasonal behaviour was apparent for the deciduous species. The time differences between the estimations and the ground observations of the phenological events were approximately within the error margin ( ± 12 days) of the temporal resolution. The classification performances were promising, with higher accuracies achieved for the forest types (OA of 86% and κ = 0.73) than for individual species (OA of 72% and κ = 0.58). These results show that multitemporal C-band backscatter data have significant potential to supplement optical remote sensing data for ecological studies and mapping of mixed temperate forests
    corecore