43 research outputs found

    Agmatine modulates spontaneous activity in neurons of the rat medial habenular complex—a relevant mechanism in the pathophysiology and treatment of depression?

    Get PDF
    The dorsal diencephalic conduction system connects limbic forebrain structures to monaminergic mesencephalic nuclei via a distinct relay station, the habenular complexes. Both habenular nuclei, the lateral as well as the medial nucleus, are considered to play a prominent role in mental disorders like major depression. Herein, we investigate the effect of the polyamine agmatine on the electrical activity of neurons within the medial habenula in rat. We present evidence that agmatine strongly decreases spontaneous action potential firing of medial habenular neurons by activating I1-type imidazoline receptors. Additionally, we compare the expression patterns of agmatinase, an enzyme capable of inactivating agmatine, in rat and human habenula. In the medial habenula of both species, agmatinase is similarly distributed and observed in neurons and, in particular, in distinct neuropil areas. The putative relevance of these findings in the context of depression is discussed. It is concluded that increased activity of the agmatinergic system in the medial habenula may strengthen midbrain dopaminergic activity. Consequently, the habenular-interpeduncular axis may be dysregulated in patients with major depression

    The polyamine spermine potentiates the propagation of negatively charged molecules through the astrocytic syncytium

    Get PDF
    The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium

    Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney

    Get PDF
    Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.BackgroundK+ channels have important functions in the kidney, such as maintenance of the membrane potential, volume regulation, recirculation, and secretion of potassium ions. The aim of this study was to obtain more information on the localization and possible functional role of the inwardly rectifying K+ channel, Kir7.1.MethodsKir7.1 cDNA (1114 bp) was isolated from guinea pig kidney (gpKir7.1), and its tissue distribution was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, a genomic DNA fragment (6153 bp) was isolated from a genomic library. cRNA was expressed in Xenopus laevis oocytes for functional studies. Immunohistochemistry and RT-PCR were used to localize Kir7.1 in guinea pig and human kidney.ResultsThe expression of gpKir7.1 in Xenopus laevis oocytes revealed inwardly rectifying K+ currents. The reversal potential was strongly dependent on the extracellular K+ concentration, shifting from -14 mV at 96 mmol/L K+ to -90 mV at 1 mmol/L K+. gpKir7.1 showed a low affinity for Ba2+. Significant expression of gpKir7.1 was found in brain, kidney, and lung, but not in heart, skeletal muscle, liver, or spleen. Immunocytochemical detection in guinea pig identified the gpKir7.1 protein in the basolateral membrane of epithelial cells of the proximal tubule. RT-PCR analysis identified strong gpKir7.1 expression in the proximal tubule and weak expression in glomeruli and thick ascending limb. In isolated human tubule fragments, RT-PCR showed expression in proximal tubule and thick ascending limb.ConclusionOur results suggest that Kir7.1 may contribute to basolateral K+ recycling in the proximal tubule and in the thick ascending limb

    Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis

    Get PDF
    Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg(2+)] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future

    Expression of Toll-Like Receptors in the Developing Brain

    Get PDF
    Toll-like receptors (TLR) are key players of the innate and adaptive immune response in vertebrates. The original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis during development. Making use of real-time PCR, in situ hybridization, and immunohistochemistry we systematically examined the expression of TLR1–9 and the intracellular adaptor molecules MyD88 and TRIF during development of the mouse brain. Expression of TLR7 and TLR9 in the brain was strongly regulated during different embryonic, postnatal, and adult stages. In contrast, expression of TLR1–6, TLR8, MyD88, and TRIF mRNA displayed no significant changes in the different phases of brain development. Neurons of various brain regions including the neocortex and the hippocampus were identified as the main cell type expressing both TLR7 and TLR9 in the developing brain. Taken together, our data reveal specific expression patterns of distinct TLRs in the developing mouse brain and lay the foundation for further investigation of the pathophysiological significance of these receptors for developmental processes in the central nervous system of vertebrates

    Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei.

    No full text
    The lateral habenular complex (LHb) is a bilateral epithalamic brain structure involved in the modulation of ascending monoamine systems in response to afferents from limbic regions and basal ganglia. The LHb is implicated in various biological functions, such as reward, sleep-wake cycle, feeding, pain processing, and memory formation. The modulatory role of the LHb is partially assumed by putative spontaneously active LHb neurons projecting to the dopaminergic ventral tegmental area (VTA) and to the serotonergic median (MnR) and dorsal raphe nuclei (DR). All four nuclei form a complex and coordinated network to evoke appropriate responses to reward-related stimuli. At present it is not known whether individual LHb neurons project to only one or to more than one monoaminergic nucleus. To answer this question, we made dual injections of two different retrograde tracers into the rat VTA and either DR or MnR. Tracers were visualized by immunohistochemistry. In coronal sections, the different retrogradly labeled habenular neurons were quantified and assigned to the corresponding habenular subnuclei. Our results show that 1) the distribution of neurons in the LHb projecting to the three monoamine nuclei is similar and exhibits a great overlap, 2) the vast majority of LHb projection neurons target one monoaminergic nucleus only, and 3) very few, heterogeneously distributed LHb neurons project to both dopaminergic and serotonergic nuclei. These results imply that the LHb forms both separate and interconnected circuits with each monoaminergic nucleus, permitting the LHb to modulate its output to different monoamine systems either independently or jointly.Accepted manuscript/ JCN-11-0190.R

    Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body

    No full text
    Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery

    Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?

    Get PDF
    Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the "classical" pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons
    corecore