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Astrocytic Syncytium
Jan Benedikt 1, Christian J. Malpica-Nieves 2,* , Yomarie Rivera 3, Miguel Méndez-González 4 ,
Colin G. Nichols 5, Rüdiger W. Veh 6 , Misty J. Eaton 2 and Serguei N. Skatchkov 1,2,*

1 Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
2 Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
3 Department of Chiropractic, Universidad Central del Caribe, Bayamón, PR 00956, USA
4 Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA
5 Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
6 Institut für Zell- und Neurobiologie, Charité, 10115 Berlin, Germany
* Correspondence: christian.malpica@uccaribe.edu (C.J.M.-N.); serguei.skatchkov@uccaribe.edu (S.N.S.);
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Abstract: The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is
growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other
beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively
coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory
effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well
understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure,
and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-
impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs,
(ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the
PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no
effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler
carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is
essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs
for negatively charged molecules through glial syncytium.

Keywords: polyamines; glial syncytium; astrocytes; connexin

1. Introduction

In brain, neurons and glial cells are isolated one from another by the aquatic-intercellular
space. Astrocytes are connected by large diameter connexin (Cx) gap junction pores (GJs)
that facilitate astrocytic communication and function [1–4]. Over the past decade, the
interest about astrocytes [5–8] and polyamines (PAs) in the nervous system [9–18] has in-
creased. Astrocytes have extensive communication via Cx GJ channels that make the three-
dimensional astrocytic syncytium large, electrically isopotential [4,19], and unique [10,11,19,20].
Furthermore, astrocytes, but not neurons, accumulate PAs [15,18,21–23] and provide PA
fluxes via Cx GJs [24], specifically via Cx43 GJs [25,26]. Half-GJs, Cx43-hemichannels (HCs)
are open to the extracellular space and are pathways for PA release from astrocytes [14] as
well as for glutamate [27], glutathione [28], D-serine [29], and ATP [30]. Metabolites are
transferred via glial Cx43 and Cx30 GJs for large distances where they may affect the neu-
ronal environment [2,20,29,31–33]. Therefore, GJs and HCs together with transporters like
SLC18B1 [34] and SLC22A [11,15,16,35–37] are PA uptake/release pathways in astrocytes
and other glial cells.
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Recently, PAs and their derivatives have been recognized as novel gliotransmit-
ters [10,11,14,18,24,34]. Acetylated PAs [38], acrolein, putreanine, and hypusine [15] are
novel (patho)physiological-glial PA derivatives and markers. Intriguingly, the PAs sper-
midine (SPD) and spermine (SPM) are not synthesized in adult astrocytes [9,39,40], but
are accumulated in these glia, suggesting a high rate of unidirectional PA uptake in astro-
cytes [14,34,41]. Therefore, such PA accumulation is clearly evolutionarily determined; it is
found throughout the brain [21,42], retina [22,23,43], peripheral nervous system [44], and in
glial-neuronal co-cultures [45] of multiple species, including humans [22]. While the brain
contains high amounts of SPD and SPM, the smaller PA putrescine is present at much lower
concentrations, about 2% of the total PA content [46–48]. Conversion of putrescine to GABA
in astrocytes was suggested [3,49,50] and, indeed, astrocytes release GABA [15,18]. GABA
released from astrocytes confers tonic inhibition and is an anti-epileptic glial agent [18,49].

SPD/SPM are observed only in a few adult neurons and neurosecretory-neuronal-
synaptic terminals [42] and the mechanisms of PA accumulation in glia, action, and
astrocyte-to-astrocyte communication remain a mystery [14,15,24,41]. PAs underlie many
glial cell-involved CNS diseases and syndromes [3,10,11,15]. PA catabolism in brain is reg-
ulated by Spermidine/Spermine N 1-Acetyltransferase (SSAT), which catalyzes acetylation
of SPD and SPM and polyamine oxidases (PAO, SMOX); these catalyze the oxidation of
acetylated PAs to dangerous radicals, such as hydrogen peroxide and propyl aldehyde
(3-aminopropanal) causing excitotoxicity, epilepsy, seizure, and astrogliosis [16,17,51,52].
There are ways to quench oxidation of PAs and to induce neuroprotection by blocking
DAO, PAO, and SMOX by aminoguanidine, chloroquine [53,54], and probably by SPD
which has a clear neuroprotective effect [55]. Both SPD and D-glucosamine are found to
promote longevity [56].

Recently, it was shown that glial cell-to-cell communication in brain [24], retina [57],
and specifically in cells expressing Cx43-GJs [26] is strongly dependent on the intracellular
store of PAs. PAs enter Cx43-expressing cells via PA uptake from the extracellular space
and then act internally to affect cell-to-cell communication [58]. We have previously
shown that intracellular SPM and SPD open Cx43-GJs [25,26]. The opening of GJs is
crucial for processes, such as glucose transport [59], potassium buffering [4,60,61], and
large-scale distribution of energetic substrates and signaling molecules throughout the
syncytium [2,61–64].

Intriguingly, the trafficking of glucose molecules with zero charge (fluorescent 2-NBDG
and fluorescent 6-NBGD) via GJs was about two orders higher in the astrocytic syncytium,
compared with a negatively charged phosphorylated glucose, such as 2-NBGD-6P (glucose-
6-phosphate) [31,59]. Therefore, this unexpected difference in charge-dependent trafficking
of molecules through astrocytic GJs prompted us to investigate (i) the propagation of differ-
ently charged molecules with (ii) varying molecular weights, and (iii) the role the PA SPM
may play. We have previously shown that SPM (1) opens gap junctions in astrocytes [24]
and (2) in Novikoff cells [26] which natively express Cx43, where SPM (3) removes hydro-
gen block [25] and (4) calcium block of Cx43 [26]. A part of the current work was presented
in abstract form at the Annual Society for Neuroscience meeting [65].

2. Materials and Methods
2.1. Animals

All procedures were carried out in accordance with the National Institute of Health
guidelines for the humane treatment of laboratory animals and with the approval from the
Universidad Central del Caribe Institutional Animal Care and Use Committee.

2.2. Brain Slice Preparation

To avoid age-dependent variation in Cx-based communication, we used brains of
25–30 postnatal-day-old Sprague-Dawley (P25–P30) rats. At this age, glial cells are mature
and both Cx 43 gap junctions and Kir4.1 channels are fully developed [3,66–68]. Transverse
350 µm thick hippocampal slices were prepared from the brains of Sprague-Dawley rats of
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both sexes. Brains were dissected in ice-cold artificial-cerebrospinal fluid (ACSF) saturated
with 5% CO2/95% O2 and slices were cut using a vibratome (VT1000S; Leica, Nussloch,
Germany). The slices were then incubated for recovery in a standard ACSF solution con-
taining (mM) 127 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 10 glucose, 26 NaHCO3,
gassed with 5% CO2/95% O2, pH 7.4, (osmolarity 305 mOsm/L). The incubation was for
20 min at 35 ◦C and an additional 10 min at RT. After 30 min of total incubation, slices
were placed in a recording chamber (0.5 mL volume) and superfused continuously with
oxygenated ACSF at room temperature (23–24 ◦C, 1 mL/min). Whole cell recording and
fluorescent dye tracing studies were performed as described previously [24,57,65].

2.3. Electrophysiology

MX7500R/L manipulators with MC-1000 drives (Siskiyou Inc., Grants Pass, OR, USA)
were used for positioning micropipettes for whole-cell voltage-clamp and current-clamp
recordings. Astrocytes were clamped with patch pipettes made from borosilicate-glass
tubing (OD 1.5 mm, ID 1.0 mm; World Precision Instruments, Sarasota, FL, USA) pulled
in four steps using a Flaming-Brown P-97 pipette puller (Sutter Instruments Corporation,
Novato, CA, USA). Pipettes were filled with intracellular solution (ICS) containing (mM)
117 K-gluconate, 13 KCl, 2 MgCl2, 10 HEPES, (1 SPM-Cl was used in part of experiments),
pH adjusted to 7.2 with KOH (osmolarity ~285 mOsm/L). After filling with ICS, the final
micropipette resistance was close to 8 MΩ, which was optimized for astrocyte recordings
to achieve seals of more than 3 GΩ on cell membranes. In slices, voltage clamping and
current recording in the whole-cell patch-clamp mode from astrocytes were performed
using MultiClamp700B (Molecular Devices, San Jose, CA, USA). The pClamp 10 software
package (Molecular Devices Inc., San Jose, CA, USA) was used for data acquisition and
analysis. The traces were low-pass filtered at 3 kHz and digitized at 10 kHz (Axon DigiData
1440A interface) (Molecular Devices Inc., San Jose, CA, USA). The electrophysiological data
were analyzed with the software, Clampfit 10.2 (Molecular Devices, San Jose, CA, USA).

Astrocytes were dialyzed in whole-cell configuration in current clamp (zero-current)
mode. Each single astrocyte tested was loaded via a patch pipette with the physiological
ICS containing different fluorescent dyes in the presence or absence of 1 mM SPM. This
concentration of SPM was chosen because it is close to the cytoplasmic SPM concentration
of about 800 µM in glia [69].

Astrocyte recordings were accepted only if (i) the membrane potential was negative to
~−70 mV and (ii) if cells had a linear current-voltage relation (adult-passive astrocytes) and
(iii) low input resistance (<20 MΩ). We used voltage-clamp mode to test current-to-voltage
relationships and to characterize the type of cells. The holding potential was kept equal
to the resting potential (to keep zero current), and cells were stimulated by short 60 ms
voltage steps applied from the holding potential to −150, and then up to +150 mV in 10 mV
increments, or by a “step-ramp” protocol using a step to −120 mV (for 100 ms), followed
by a rising voltage ramp to +100 mV during 80 ms, and then a step back to resting voltage.
We selected short protocols with a well-tolerated voltage range to help keep cells healthy
while cell type was determined. Passive astrocytes, which are part of a large syncytium,
produced linear I/V curves and were further utilized for GJ communication experiments.
We avoided using astrocytes localized closer to the slice surface because those astrocytes
may be artificially decoupled by the trauma obtained during cutting the slice. Instead, we
recorded only from astrocytes situated at least 100 µm below the surface of the slice [70].
Therefore, the data were collected from well-coupled mature-passive astrocytes in the
syncytium [66] with isopotentiality [19], but not from other cell types.

2.4. Cell Selection and Morphology

Morphologically and electrophysiologically identified astrocytes were used but not
neurons, NG-2 cells, and oligodendrocytes. Astrocytes accumulating SPM/SPD, pyramidal
neurons, and interneurons show different localizations (Figure 1) in stratum pyramidale
(SP), in stratum radiatum (SR), and in stratum oriens (SO). In living brain slices, the
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astrocytes were visualized and identified using several procedures: (i) by their localization
in SR and SO, (ii) by their small size and (iii) by their passive electrical properties. We
used an Olympus infrared microscope (BX51WI; Olympus, Shinjuku-ku, Tokyo, Japan)
equipped with a 40X water-immersion objective and two cameras: a CCD-video-camera
(XC-73, Sony, Tokyo, Japan) for infrared differential interference contrast (IR-DIC) with
DIC optics; a second camera (DP30BW digital, Olympus, Shinjuku-ku, Tokyo, Japan) for
fluorescent images with. DP controller software (Olympus, version 3.3.1.292) was used to
visualize, record black and white images, and quantify the spread of the dyes.

We specifically selected the CA1 area of hippocampus where (i) astrocytes are clearly
separated from pyramidal neurons in specific areas (which is not like in cortex where
astrocytes are mixed with different neuronal cells) and (ii) the astrocyte size is about twice
smaller than neurons (Figure 1). In addition, we tested electrophysiological properties
of patched astrocytes. No neurons or NG2 cells were used. The cells patched have no
spontaneous-synaptic potentials (either depolarizing or hyperpolarizing miniature poten-
tials) and no spikes.

We visualized the dye-coupled astrocytes (loaded with membrane-impermeable dyes
via the micropipette) and determined the size of the syncytium, the heterogeneous connec-
tivity, and the extent of dye propagation in recipient astrocytes after 10 min of single-cell
dialysis. Counting of coupled cells was carried out in a single X-Y plane (focused on
the cell which was filled with fluorescent dye) and was equally applied for all the slices
and procedures tested. In addition, for high-resolution imaging and for retention of the
dyes after 10 min of single-cell dialysis, each slice was immersed in freshly prepared 4%
paraformaldehyde in 0.1 M PBS solution, pH 7.4, in 5 mL tubes. After shaking for 5 min
at room temperature, the slices were stored at 4 ◦C for 1 h. Freshly fixed slices were then
processed via confocal microscopy to obtain fresh additional 3D images showing propaga-
tion of different dyes with and without cytoplasmic SPM in the glial syncytium using a
confocal-scanning microscope (LSM 510 META, Zeiss, Oberkochen, Germany and Olympus
Fluoview FV1200, Olympus, Japan).

2.5. Immunohistochemistry

Brain slices (350 µm thick from 25–30 days old Sprague Dawley rats) were used for
immunohistochemical studies. We used a total of 56 rats for the experiments presented in
Figures 1–6. From each rat, we obtained 5 brain slices. From each brain slice, we used one
to two astrocytes to test-dye propagation. The slices (prepared as described above) were
fixed in a solution of 4% paraformaldehyde, 0.05% glutaraldehyde, and 0.2% picric acid in
0.1 M phosphate buffer, pH 7.4, for 16 h. After fixation, the slices were cryoprotected by
immersion in 0.15 M sucrose in 0.1 M phosphate buffer, pH 7.4 (for 24 h), 0.5 M sucrose
(for 24 h), and 0.8 M sucrose (for 48 h). Subsequently, they were frozen at −60 ◦C in
liquid pentane and then stored in a −80 ◦C freezer until next use. The 350 µm slices
were mounted on a platform of frozen OCT compound in a cryostat and resectioned at
25 µm thickness using Leica CM1520 cryostat (Leica Biosystems, Wetzlar, Germany) at
−20 ◦C. The sections were pretreated with 1% sodium borohydride in PBS for 15 min, and
subsequently permeabilized with 0.3% Triton X-100 for 30 min. The primary anti-SPM and
anti-Kir2.4 antibodies were generated and characterized in the laboratory of Dr. Rüdiger
Veh [21,22,71]. Antibodies were used at dilutions of anti-SPM at 1:300 and anti-Kir2.4
at 1:5000. After incubation with the primary antibody for 36 h at 4 ◦C, freely floating
sections were treated with the secondary antibody (biotinylated goat anti-rabbit IgG 1:2000,
Vector Laboratories, Inc., Newark, CA, USA) for 18 h, and then with an ABC complex
(Vectastain Elite, 1:1000, Vector Laboratory) for 6 h. Peroxidase activity was revealed with
1.4 mM 3,3-diaminobenzidine (DAB), 10 mM imidazole, 0.3% nickel ammonium sulfate
and 0.015% hydrogen peroxide in 50 mM Tris-HCl, pH 7.6 for 3 min at room temperature.
Controls were obtained by omitting the primary antibody and occasionally supplemented
by cell-body staining (Cresyl violet). All sections were developed for 3 min, mounted on
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glasses and dehydrated through a graded series of ethanol, transferred into xylene and
coverslipped with Entellan (Merck, Darmstadt, Germany).

2.6. Materials

In this study, we used several different charged (negative, positive, and neutral)
molecules of fluorescent dyes. Alexa-488-biocytin, Alexa-568, and sulforhodamine-101
were purchased from Molecular Probes. Lucifer Yellow, sulforhodamine-B, 1,1-Diethyl-
2,2-cyanine iodide (decynium22, D22) 2-NBD-glucose, and 4-(4-(dimethylamino)-styryl)-
N-methylpyridinium, (ASP+) were obtained from Sigma Chemical Co., Ltd. (St. Louis,
MO, USA). For testing the compounds, one of these negatively or positively charged, or
polar molecules, was added to the ICS at the following concentrations: 2 mg/mL (~3.6 µM)
2-NBD-Glucose [59]; 2 µM ASP+ [72]; 1 µM D-22 [72,73]; 1 µM sulforhodamine-101 [74–76];
100 µM Alexa 488-biocytin [65]; 1 mM Lucifer Yellow [24,77]; 200 µM Alexa 568 [65]; and
2 mM sulforhodamine-B [57].

Carbenoxolone (200 µM CBX), a gap junction uncoupler, used in this study to block
fluorescent dye propagation was purchased from Sigma Chemical Co., Ltd. (St. Louis,
MO, USA).

2.7. Data Analysis

Data were analyzed using pCLAMP-10, version 10.4.0.36 (Molecular Devices, San
Jose, CA, USA) or Origin 8 software, version 8.0725 (OriginLab, Northampton, MA, USA)
and were reported as mean ± SEM. Significant differences between groups of data were
evaluated using the paired Student’s t-test. Statistical significance was expected if p < 0.05.
Note: brain slices incubated for longer than 1 h were not used. In addition, all the data
were tested for normality using the Shapiro-Wilk test (they passed the normality test).

3. Results
3.1. Localization of Polyamines Spermine and Spermidine (SPM/SPD) in Astrocytes and
Polyamine-Sensitive Potassium Inwardly Rectifying Channels Kir2.4 in Neurons

To visualize astrocytes versus neurons, we used antibodies against the PAs SPD/SPM
and the neuronal Kir2.4 channels. We found localization of PAs in astrocytes (Figure 1A,
white arrowheads) while Kir2.4 channels are localized in pyramidal cells (Figure 1C, black
arrow) and in interneurons (Figure 1C, red arrow), but not in glia (Figure 1C). The Kir2.x
family displays the highest PA-sensitivity and SPM regulates the permeability of these
channels [78]. PAs were found in glia and astrocytes are co-localized with interneurons
(Figure 1). From the literature, it is known that the interneurons and astrocytes express
PA sensitive AMPAR and KAR (AMPA-kainate receptors) [79–84], n-n-AChR [85,86], NM-
DAR [87,88], TRP channels [89–91], and a variety of Kir channels [69,78,92]. This suggests
that glial cells can use SPM and SPD to regulate not only their own Kir4.1 channels [22,23,69]
or Cx43 GJs [26,93], but also the neighboring neuronal receptors and channels by SPM,
if released. The astrocytes may also propagate PAs through the astrocytic syncytium via
GJs [24] and then release them into the neuronal network under special conditions, such as
gliotoxin [18] or during uptake/release [14].

3.2. Determination of Membrane Permeable (Uptake) versus Impermeable Dyes to Study
Astrocyte-to-Astrocyte Dye Propagation

The next question was: which molecules may be used to analyze transfer via astrocytic
GJs? For this, we need to distinguish between membrane-permeable versus membrane-
impermeable dyes. To visualize the diffusion only through the gap-junctions, we carefully
selected the dyes we would use in our experiments. We found that some dyes were crossing
the astrocytic membrane and, therefore, were not suitable to study intracellular propagation
through the astrocytic syncytium.
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Figure 1. Localization of SPM in astrocytes and Kir 2.4 in neurons in CA1 hippocampus. (A) Im-
munocytochemical visualization of spermine/spermidine (SPM/SPD) accumulation in astrocytes
(white arrowheads). Black arrow indicates the pyramidal cell area showing that pyramidal cells are
not accumulating SPM and stay transparent. White arrow points to a blood vessel enwrapped by
fine-astrocytic processes. (B) Staining with cresyl violet shows all cells (neurons and astrocytes) in
the CA1 area of hippocampus. White arrowheads show small cells, likely astrocytes. Red arrow
points to large interneuron. (C) Red arrows show interneurons, whereas black arrows show pyra-
midal cells. The neuronal channel Kir2.4 is localized in neurons. SO, SP, and SR are stratum oriens,
pyramidale, and radiatum, respectively. Note: most of the patch-clamp recordings ignore the fact
that the astrocytic cytoplasm contains SPM.

Several dyes (Figure 2) were taken up by the astrocytes during the time when the
puffing tip of patch micropipette was approaching the cells, and therefore, were not
suitable for the present study. 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP+),
sulforhodamine-101 (S101), and decynium-22 (D22) were rapidly, robustly, and selectively
taken up by astrocytes, but not neurons (Figure 2A–C). Similarly, 2-NBDG was taken up
by astrocytes (Figure 2D). Our previous data showed that membrane uptake of amines
could occur in astrocytes and gliomas [72,94] via SLC22A-type transporters that also
transport ASP+, MPP+ (amines) and PAs [36]. Therefore, amino group-containing dyes
could be substrates for polyspecific mono- and polyamine transporters [36,95] expressed in
glia [5,34,35,96]. In general, positively charged dyes with cationic-functional groups, such
as −NR3+ or =NR2+ (such as, ASP+, MPP+, and thiazine, D22) were deemed not suitable
for the present study. Also, fluorescent glucose (Figure 2D) was taken up by astrocytes most
probably by the GLUT1 transporter [97,98]. It would be difficult to determine if the dyes
shown in Figure 2A–D were taken up by the cells through the membrane or propagated
to neighboring cells via GJs communication; therefore, these dyes were not suitable for
further experiments for the intracellular propagation study.

In addition, there are large pores, such as connexin [1,64,99,100] and pannexin hemichan-
nels [2], which can potentially take up the fluorescent molecules from the extracellular
space, particularly if astrocytes are in a low metabolic stage or during gliosis [99,101]. To
minimize this uptake, we prevented activation and opening of large pores, such as connexin
and pannexin hemichannels, P2X receptors, and others by (i) keeping concentrations of
extracellular divalent cations at high physiological millimolar concentrations (block of Cx43
HCs), (ii) avoiding metabolic deficiency, and (iii) avoiding the use of any agonists which
open pannexin hemichannels and P2X receptors. Figure 2E–H shows compounds that are
not taken up from the extracellular spaces (i.e., membrane impermeable). These molecules
include Alexa 488-biocytin (A488B), sulforhodamine B (SB), Lucifer yellow (LY), and Alexa
568 (A568), and were used for the dye-propagation studies described below.
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Figure 2. Dyes taken up versus membrane-impermeable dyes in astroglial syncytium.
(A–D): molecules which are taken up by astrocytes (white arrowheads and red arrows), but by neu-
rons (gray arrows) and (E–H): molecules which were not taken up by astrocytes in brain slices. (A): 4-
(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), MW = 366.24, net charge = +1; (B): 1,1′-
Diethyl-2,2′-cyanine iodide or decynium22 (D22), MW = 454.35, charge = +1; (C): Sulforhodamine-101
(S101), MW = 606.71, net charge = 0; (D): 2-NBD-Glucose (2NBDG), MW = 342.26, net charge = 0;
(E): Alexa 488-biocytin (A488B), MW = 974.98, net charge = −2; (E1) Brightfield image showing
patched astrocyte. (F): Sulforhodamine B (SB), MW = 558.66, net charge = 0; (G): Lucifer yellow (LY),
MW = 521.57, net charge = −2. (H): Alexa 568 (A568), MW = 730.74, net charge = −1.

3.3. Astrocyte-to-Astrocyte Dye Spreading in Absence and Presence of Polyamines in Glia

Using the whole-cell configuration, we examined the propagation of various dyes
through the astrocytic syncytium with and without SPM in the patch pipette. We used a
concentration of SPM (1 mM) close to the physiological concentration [69] to estimate the
physiological effect of SPM on molecular propagation in the glial syncytium. We kept the
holding potential equal to membrane potential to maintain iosopotentiality [19]. Isopoten-
tiality means that astrocytes “clamp” each other electrically via gap junctions providing
equal conditions where each astrocyte in this glial network has the same membrane poten-
tial as coupled neighbors. It is important because changes of the trans-junctional potential
(trans-junctional voltage gradient, GJ gradient) may block electrical currents from cell-to-
cell [102,103] and specifically can block dye permeation because propagation is dependent
on the difference between the membrane potentials of GJ coupled cells [103,104]. Also,
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keeping the holding potential equal to resting minimizes unwanted ionic currents via mem-
branes, and avoids ionic and molecular transport across the surface membrane. The latter
can prevent calcium load and minimize changes of cytoplasmic calcium to which GJs are
extremely sensitive [26]. Finally, since magnesium [105] and hydrogen gradients [25,106]
play a role for gap junction opening/closing, we kept these concentrations normal, sta-
ble, and equal for each astrocyte patched. These conditions were equally applied in each
experiment and for each cell to keep the protocol consistent.

To obtain representative images (Figure 3) of dye propagation in stratum radiatum
of rat CA1 hippocampus, the soma of a single astrocyte was clamped in whole-cell mode
and the cell was dialyzed using either SPM-free or 1 mM SPM-containing ICS with 200 µM
Alexa 568, 100 µM Alexa 488-biocytin, 2 mM SB, or 1 mM LY. These concentrations were
close to those reported in the literature [77,107,108]. We compared differently charged
dyes: two negatively charged dyes (−2 charge) but with largely different molecular weight:
(i) Alexa 488-biocytin (A488B), (MW = 974.98, charge −2) and (ii) Lucifer Yellow (LY),
(MW = 521.57, charge −2). Then, we used negatively charged dye (−1 charge) (iii) Alexa
568 (A568), (MW = 730.74 net charge = −1) and a polar molecule with net charge of zero
(iv) Sulforhodamine B (SB), (MW = 558.66 with net charge = 0). These molecules were tested
in terms of their propagation throughout the astrocytic syncytium in the presence and
absence of SPM. We conducted the experiments in hippocampal brain slices under constant
slice perfusion of 1 mL/min with ACSF. After achieving a gigaseal and cell opening, cells
were clamped at zero current (at resting Em) in voltage-clamp mode, and i/V-test was
made. Then the cells were dialyzed for 10 min. After 10 min, the pipette was carefully
withdrawn away from the cell and fluorescent micrographs were obtained to quantify the
number of coupled cells (see Section 2).

In the absence of SPM ([SPM] = 0, Figure 3(A1,B1,C1)), LY propagated only between
few (or none) astrocytes (Figure 3(A1)), while 10–14 astrocytes (rarely up to 27 cells) were
typically filled with LY when SPM was included in the pipette (Figure 3(A2)). To establish
complete uncoupling of gap junctions, slices were perfused with carbenoxolone (200 µM),
a gap junction uncoupler, for 20 min before penetration with a patch pipette containing
the fluorescent dye. This procedure effectively blocked all dye propagation (Figure 3(A3)).
Alexa 488-biocytin propagated relatively freely (Figure 3(B1)) and, in the presence of SPM,
the number of coupled cells nearly doubled (Figure 3(B2)), but again, propagation was
blocked by 200 µM CBX (Figure 3(B3)). Similar results were obtained for Alexa 568 (see
Figures 4 and 5). In contrast, propagation of SB was unaffected by SPM (Figure 3(C1,C2)),
but SB propagation was also blocked by CBX justifying a GJ pathway (Figure 3(C3)). To
monitor integrity of the cells, the membrane potential and current-voltage relationship
were obtained twice: immediately after breaking into whole-cell mode and a second time
after 10 min of cell dialysis (Figure 3D). Only cells that showed stable electrophysiological
properties as passive astrocytes [4,19] were included in the study. Figure 3D shows an
example of a current recording from a passive astrocyte (with linear I/V-curve) and such
astrocytes were used for further analysis.
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Figure 3. Confocal images of Lucifer Yellow (LY), Alexa 488-biocytin (A488B) and Sulforhodamine-B
(SB) propagation in the astrocytic syncytium of adult rat CA1 hippocampus. (A1–A3): shows LY
(1 mM) dye propagation in the astrocyte syncytium without SPM (A1), with 1 mM SPM (A2) and
with 1 mM SPM after 20 min pretreatment with 200 µM CBX (A3). The pipette containing LY patching
a single astrocyte is visible on the left side of A1 and A3. (B1–B3): shows A488B (100 µM) dye
propagation without SPM (B1), with 1 mM SPM (B2) and with 1 mM SPM after 20 min pretreatment
with 200 µM CBX (B3). (C1–C3): shows SB (2 mM) dye propagation in the astrocyte syncytium
without SPM (C1), with 1 mM SPM (C2) and with 1 mM SPM after 20 min pretreatment with 200 µM
CBX (C3). (D): Astrocyte currents were measured at the beginning (left) and at the end (right)
of experiments. Responses to voltage steps applied from the holding potential in the range from
−150 mV to +150 mV with 10 mV increments during 60 ms are shown. The linear conductances
represent mature-passive astrocytes and they are stable during the 10 min of the experiment.

3.4. Extent of Dye-Spreading between Astrocytes Located in Stratum Radiatum of Rat CA1
Hippocampus Is Charge- and MW-Dependent and Correlates with the Ratio of Charge to MW:
Polyamine-Independent Propagation in the Glial Syncytium

For statistical evaluation of astrocytic coupling, we used different slices from different
animals for all fluorescent dyes used. Intuitively, the smaller molecular weight com-
pound should permeate easier, faster, and for more distance than large dyes. Intriguingly
and in contradiction to the obvious expectation, without SPM, LY (the lowest molecular
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weight dye) permeates via GJ syncytium much less than the larger molecular-weight dyes
(Alexa 488-biocytin, Sulforhodamine B), indicating the opposite of what was predicted
(Figure 4A). The average number of cells filled with LY was only 2.7 ± 0.2 (Figure 4A,
Vm = −80.2 ± 0.7 mV, N = 15), whereas the average number of fluorescent cells filled by
Alexa 488-biocytin was 21.4 ± 1.6 cells (Figure 4A, Vm = −79.7 ± 1.4 mV, N = 11). Alexa
568 spread to a greater number of coupled cells (36.9 ± 4.6 cells; Vm = −80 ± 0.8 mV,
N = 10) and sulforhodamine B showed much more propagation with 60.4 ± 2.9 coupled
cells (Vm =−79.4± 1.1 mV, N = 7). In general, A488B, A568, and SB that gradually differed
by molecular weight showed the number of fluorescently labeled astrocytes correlated with
the molecular weight of the fluorescent dye, with better molecular propagation of lower
molecular-weight compounds, but not for LY (Figure 4A). Indeed, the substances with
nearly equal molecular weights, such as LY and SB, have ~20 times different permeability
(Figure 4A). The smallest molecule, Lucifer Yellow, was nearly 10 times less permeable than
Alexa 488-biocytin which has the same−2 charge (Figure 4B). This suggests that the density
of the charge per molecular weight (size) plays a role, such that when the negative charge
is condensed as in the case of a small LY molecule, the permeability decreases. There was
no clear dependence of the degree of dye-coupling on molecular weight alone (Figure 4A,
note right column for LY) nor on net charge alone (Figure 4B (compare A488B with LY)).

Therefore, we calculated the ratio of the charge to weight of the molecules, and this
appears to be a key determinant for molecular propagation. Indeed, the ratio of net charge
and molecular weight of the dye clearly correlated with the number of cells coupled
(Figure 4C). Therefore, we conclude that the interaction of dyes with the GJ pore can be
dependent on both the electrical field of the pore and the density of the molecular charge
of the dye. The next question was: does SPM change such behavior?
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Figure 4. Comparison of astrocyte-to-astrocyte coupling in the control group (in the absence of
spermine ([SPM] = 0 in the intracellular solution)) and their dependence on the characteristics of
the individual dyes. (A–C): The number of coupled cells in the Alexa 488-biocytin group (A488B,
21.4 ± 1.6, N = 11, Vm = −79.7 ± 1.4 mV), Alexa 568 (A568, 36.9 ± 4.6 cells; Vm = −80 ± 0.8 mV,
N = 10), Sulforhodamine B (SB, 60.4 ± 2.9, N = 7, Vm = −79.4 ± 1.1 mV) and Lucifer Yellow (LY,
2.7 ± 0.2, N = 15, Vm = −80.2 ± 0.7 mV) is dependent on (A) molecular weight of the dye, (B) net
charge of the dye and correlates (C) with the ratio of net charge and molecular weight of the dye.
Error bars indicate standard error of mean (SEM).

3.5. Spermine Differentially Affects Spreading of Electrically Negative and Neutral Dyes
Independently on Membrane Potential

It is known that Cx pores may be negatively charged and retain charged molecules, as
has been shown for Cx40 and Cx43 [109–114]. We, therefore, hypothesized that (i) the posi-
tively charged SPM (SPM+4 at neutral pH) may either neutralize the negative pore charge
and relieve the electrical shield inside the GJ pores, or neutralize the negative charge of the
trafficking molecules [109], and (ii) the membrane potential of the cells should not play a
role since the astrocytes are joined in the isopotential syncytium [4,19], where the electrical
profile of each GJ is identical. Therefore, the trans-junctional potential between communi-
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cating astrocytes is near zero and this is the best condition for GJ opening [103,106,109–114].
We tested this hypothesis. Recordings from control (no SPM) and SPM-filled cells were
carried out in each slice in non-overlapping areas within 30 min of each other. In some
experiments, controls were performed first, whereas in others, SPM treatment was car-
ried out first. The number of coupled cells loaded with the electrically neutral dye SB
(Sulforhodamine B, 2 mM) was 60.4 ± 2.9 (N = 7) for control, compared to 60.7 ± 2.5
(N = 6) for the SPM-treated group, indicating that inclusion of 1 mM SPM in the pipette
did not alter the propagation of the neutral dye SB (Figure 5(A1)). On the other hand,
1 mM SPM significantly increased the extent of coupling of negatively charged Alexa 568
(Figure 5(B1)), control (36.9 ± 4.6, N = 10), compared to SPM-treated group (59.3 ± 5.2,
N = 10, p < 0.01), and also increased the level of coupling of negatively charged Alexa
488-biocytin (Figure 5C1), control (21.4 ± 1.6, N = 11), compared to the SPM-treated group
(33.3 ± 3.4, N = 10, p < 0.01). The most dramatic effect of SPM was seen with LY, control
(2.7 ± 0.2, N = 15), compared to SPM-treated group (11.0 ± 1.4, N = 15; p < 0.0001) which
was a 292% increase.

These results suggest that SPM affects only permeation of negatively charged molecules,
while having no effect on neutral ones. Indeed, as was expected, we observed a lack of
correlation between dye coupling and the astrocytic membrane potential in the control
group and in the SPM-treated group (Figure 5(A2,B2,C2)). This is most probably due to
well-known isopotentiality of the astrocytic syncytium where each coupled astrocyte has
the same membrane potential as neighboring astrocytes [4,19]. For optimal GJ communica-
tion, the only major consideration is the equal trans-GJ membrane potential of neighboring
cells [25,110–114]. This condition is present in the astrocytic syncytium [19].

3.6. Extent of Spermine Effect Correlates with the Ratio of Charge and MW of the Dyes

Using the above data (Figure 5), we calculated the % increase in cell coupling in
response to SPM in the patch pipette, i.e., dialysis of the cytoplasm of the cell with SPM
(Figures 5 and 6) representing a percentile of SPM-induced increase of dye propagation
(Figure 6A–C). SPM induced an increase in propagation of charged molecules of 56% for
Alexa 488-biocytin (A488B) group, of 61% for Alexa 568 (A568) and of 292% for the smaller
but strongly charged molecule of LY.

In contrast, there is no increase in Sulforhodamine B propagation (Figure 5A versus
Figure 6A, SB). The dependence on the molecular weight of the dye (Figure 6A), net
charge of the dye (Figure 6B), and the ratio of net charge to molecular weight of the
dye (Figure 6C) is graphed. One important observation is that SPM increased equally
permeation of A488 and A568; however, these molecules differed by molecular weight
and charge (Figure 6A–C). That is not the case when SPM was absent in the cytoplasm
(Figure 4C).
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Figure 5. Effect of intracellular spermine (SPM) on propagation of electrically neutral and charged
dyes through the astroglial syncytium. (A1) Using neutral-polar dye SB, electrically neutral amine
Sulforhodamine B (2 mM), 1 mM spermine (SPM) included in the pipette has no effect on the amount
of coupling cells: control (60.4 ± 2.9, N = 6) compared to the SPM-treated group (60.7 ± 2.5, N = 6).
(B1) Using negatively charged dye A568, Alexa 568 (200 µM), 1 mM spermine increases the extent
of coupling, control (36.9 ± 4.6, N = 10) compared to the SPM-treated group (59.3 ± 5.2, N = 10).
(C1) 1 mM spermine increases the amount of coupling of cells filled with negatively charged Alexa
488-biocytin (100 µM), control (21.4 ± 1.6, N = 11) compared to the SPM-treated group (33.3 ± 3.4,
N = 10). The asterisks indicate a significant difference between the control and SPM-treated groups.
(D1) 1 mM SPM strongly increases the amount of coupling of cells filled with negatively charged
LY, Lucifer Yellow (100 µM), control (3.5 ± 1.7, N = 15) compared to SPM-treated group (11.5 ± 3.6,
N = 14). The asterisks indicate a significant difference between the control and SPM-treated groups
(p < 0.01), error bars indicate standard error of mean (SEM). (A2–D2): There is no correlation found
between coupling and the astrocytic-membrane potential in the control group (white triangles) or in
the spermine-treated group (black-filled circles).
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Figure 6. Spermine strongly increases propagation of negatively charged molecules: Dependence of
the % increase in astrocytic coupling by SPM (1 mM) on the characteristics of the individual dyes.
SPM-induced a 56% increase in the Alexa 488-biocytin group, a 61% increase in the Alexa 568 group,
no change in the Sulforhodamine B group and a 292% increase in the Lucifer Yellow group. These
changes were dependent on (A) molecular weight of the dye, (B) net charge of the dye and correlate
(C) with the ratio of net charge and molecular weight of the dye. The red line shows the strength of
SPM to increase propagation of various negatively charged molecules through GJs in the astrocytic
syncytium. Error bars indicate standard error of the mean (SEM). Note: compare with Figure 4 where
endogenous PAs were dialyzed out of the astrocytes.

There is a clear dependence on the ratio of net charge to MW, indicating that charge
density is the major factor in SPM-induced dye propagation.

4. Discussion

PAs play a key role in brain function and cell survival [12,34,40,47,115–117]. Recently,
it was reviewed that PAs are anti-inflammatory, antioxidant, antithrombotic, antidepres-
sant [10,11,13,15,16,118], and neuroprotective [55]. Indeed, both SPM and SPD have demon-
strated similar effects. Both SPM and SPD are accumulated in healthy, but not in, damaged
by gliotoxin astrocytes [18], and SPM is more effective than SPD and PUT as an opener of
Cx43 [26]. For this reason, we chose to investigate the effect of SPM in the present study.

Also, PA content declines during aging [48] but SPD supplement is beneficial for
memory [12,116,119–121], immune response [12], and increasing longevity [122]. Intrigu-
ingly, in the long-lived rodent, the naked-mole rat, PAs (in particular SPD, cadaverine,
N8-acetyl-SPD, and N1,N8-diacetyl-SPD) were elevated, compared to its short-lived coun-
terparts. Well known age-associated decline in SPD and N1-acetylspermidine levels in
rodents did not occur in the naked-mole rat or was not even reversed (in the case of N1-
acetylspermidine) [123]. It seems that PAs are key players in a large scope of diseases and
age-related processes.

However, the functional analysis of astrocytic Cx43 GJs in respect to PAs is not well
established. Interestingly, due to different amino-acid-pore sequences, Cx40 GJs are blocked
by PAs [109,112,113], while Cx43 and Cx38 are not [25,26,109,124]. Glial cells do not have
Cx38 and Cx40, but recently, robust glial Cx43 overexpression (over 6 times) was shown
during aging-related tau astrogliopathy [125], making Cx43 and PAs of special interest.
Cx43 is the dominant connexin subunit in cortical and hippocampal astrocytes accompanied
by minor expression of Cx30 and Cx26 [20,100,118,126–128]. Consequently, cell-to-cell
coupling for small ions and molecules is strongly reduced in Cx43 KO [58] and abolished
in double-knockout mice lacking both Cx43 and Cx30 [32,59,61].

Intriguingly, studies in brain slices demonstrate variable cell-to-cell coupling [57,66,70,
129,130], and large inconsistency has been reported in terms of the actual number of coupled
astrocytes when using the fluorescent dyes in the same CA1 area of the hippocampus with
and without SPM in the pipette (Figures 4–6). Indeed, in the absence of SPM, very low
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coupling is typically reported [24,66,70,130]. As we can assume, astrocytes accumulate PAs
in healthy brain (Figure 1A) which is consistent with an earlier study [15,21]. In contrast,
(i) traumatic brain injury, (ii) rising acidity of the cytoplasm [131,132], and (iii) other
conditions, such as gliotoxin [18], may lead to PA loss in astrocytes. The lowering pH
results in blockade of gap junctions [105,106]; however, PAs restore GJ conductance by
removing such hydrogen cation block of Cx43 [25,26]. Cells accumulate PAs [133], and
SPM/SPD may be liberated from these stores and open Cx43 GJs by removing hydrogen and
calcium-cation block [26]. Intriguingly, when SPM was not used, the trafficking of glucose
with zero charge (fluorescent 2-NBDG or 6-NBGD) was robust in the astrocytic syncytium
while the traffic of the phosphorylated-metabolite glucose-6-phosphate (2-NBGD-6P) was
dramatically decreased by about 70% [31,59]. The phosphorylated glucose has a negative
charge and is similar to negatively charged LY, A488, and A568 whose permeability is
limited in the absence of SPM, but increased by SPM (Figures 4–6). In addition, if LY is
tagged to biocytin (which neutralizes a negative charge of LY), the astrocytic coupling was
extensive and similar to zero charge sulforhodamine-B [59].

Since SPD synthesis is absent in adult astrocytes [39,134], the endogenous PAs of glial
cells are typically washed out rapidly (during 70–120 s) after attainment of whole-cell
configuration [69]. Astrocytes can lose SPM during brain-slice preparation and incubation
(unpublished observations); therefore, inclusion of SPM intracellularly at a concentration
shown to be physiologically present in vivo in glial cells [69] considerably increases prop-
agation of negatively charged dyes, such as Alexa 568 and Alexa 488-biocytin, and most
dramatically, the relatively small and highly charged LY (Figures 3–6). We suggest that
different results in the literature may be due to variation in PA content and factors, such as
the species and age of the animal, area of the brain or retina, molecular weight, charge, size,
and shape of the dye.

As we show, without SPM, none (Figure 3(A1)) or few astrocytes (Figure 5(D2)) showed
LY propagation, which is in good agreement with previous work [24,70,130]. We infer that
SPM itself must propagate through gap junctions because it opens LY spreading further
than just the adjacent astrocyte and can cause robust coupling of cells in the distant part
of the syncytium (Figure 3(A2)). Therefore, the native SPM concentration may be rapidly
equilibrated among astrocytes through gap junctions and, thereby, help to keep the network
chemically and electrically coupled. This may help to maintain the isopotentiality that was
found previously [4,19].

PA signaling through gap junctions may be a key to regulate cell proliferation [109],
particularly of astrocytes [41] and gap-junction organization in mammalian tissues [135].
Our finding suggests a mechanism by which SPM could facilitate diffusion of negatively
charged molecules, without having an effect on neutral ones. These possibilities include:
direct binding of the PA cations (SPM4+) to negatively charged dye molecules as was shown
for acid proteins, ATP, and RNA, etc. in the cytoplasm [133]. By binding and neutralizing
the negative charge of these molecules, PAs can enhance their permeation via GJ pores. It is
known that astrocytes modulate activity of neurons by release of such negatively charged
transmitters via hemichannels [1,64,99,136,137]; however, the studies did not highlight
whether these molecules are bound to positively charged cations in the cytoplasm, such as
PAs, that was shown [133]. So, an acid pH shift occurring in glial cells after their activation
may lead to liberation of PAs from cytoplasmic buffers (with ATP, adenosine, proteins,
phosphates, etc. [133]) and result in GJ regulation [25,26].

An alternative, but only theoretical explanation, could be that positively charged
SPM4+ binds directly in the Cx43-pore and neutralizes the charge in this pore, and thus,
making the pore wall electrically inert and enhancing the propagation of negatively charged
molecules. Testing this mechanism in a separate large study is required. Therefore, PAs
and their derivatives may serve many functions both within the astrocytic cytoplasm and
upon being released from glial cells [10,11,14,15] to the extrasynaptic receptors localized in
areas which are less studied.
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5. Conclusions

In conclusion, our findings suggest that we may predict the extent of coupling between
astrocytes for novel, untested molecules or fluorescent dyes by knowing MW and charge,
but most importantly, for biologically active molecules and drugs. By extension, this
suggests that SPM will facilitate diffusion of negatively charged intracellular-organic and
-inorganic anions, amino acids, polypeptides, and other signaling molecules through the
astrocytic syncytium, and may therefore, have profound effects on glial-neuronal signaling.
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