233 research outputs found

    Stabilization of helical magnetic structures in thin multilayers

    Full text link
    Based on micromagnetic simulations, we report on a novel helical magnetic structure in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers. Confined between antiparallel hard magnetic moments, a helix with a turn of 180∘^{\circ} is stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal field created by exchange interaction and anisotropy. Since the internal field stores magnetic energy, the helix can serve as an energy-storing element in spin-based nanodevices. Due to the significantly different magnetic resonance frequencies, the ferromagnetic and helical ground states are easy to distinguish in a broadband ferromagnetic resonance experiment.Comment: 4 pages, 3 figure

    Coherent storage and phase modulation of single hard x-ray photons using nuclear excitons

    Full text link
    Coherent storage and phase modulation of x-ray single-photon wave packets in resonant scattering of light off nuclei is investigated theoretically. We show that by switching off and on again the magnetic field in the nuclear sample, phase-sensitive storage of photons in the keV regime can be achieved. Corresponding π\pi phase modulation of the stored photon can be accomplished if the retrieving magnetic field is rotated by 180∘180^{\circ}. The development of such x-ray single-photon control techniques is a first step towards forwarding quantum optics and quantum information to shorter wavelengths and more compact photonic devices.Comment: 12 pages, 6 figures; v2 modified to match the published version, condensed to 4 figures, results unchange

    Spin reorientation in TlFe1.6Se2 with complete vacancy ordering

    Full text link
    The relationship between vacancy ordering and magnetism in TlFe1.6Se2 has been investigated via single crystal neutron diffraction, nuclear forward scattering, and transmission electron microscopy. The examination of chemically and structurally homogenous crystals allows the true ground state to be revealed, which is characterized by Fe moments lying in the ab-plane below 100K. This is in sharp contrast to crystals containing regions of order and disorder, where a competition between c-axis and ab-plane orientations of the moments is observed. The properties of partially-disordered TlFe1.6Se2 are therefore not associated with solely the ordered or disordered regions. This contrasts the viewpoint that phase separation results in independent physical properties in intercalated iron selenides, suggesting a coupling between ordered and disordered regions may play an important role in the superconducting analogues.Comment: Minor changes; updated references and funding acknowledgemen

    Tunable sub-luminal propagation of narrowband x-ray pulses

    Get PDF
    Group velocity control is demonstrated for x-ray photons of 14.4 keV energy via a direct measurement of the temporal delay imposed on spectrally narrow x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep positive linear dispersion in the optical response of 57{}^{57}Fe M\"ossbauer nuclei embedded in a thin film planar x-ray cavity. The direct detection of the temporal pulse delay is enabled by generating frequency-tunable spectrally narrow x-ray pulses from broadband pulsed synchrotron radiation. Our theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure

    Coherent control of the cooperative branching ratio for nuclear x-ray pumping

    Full text link
    Coherent control of nuclear pumping in a three level system driven by x-ray light is investigated. In single nuclei, the pumping performance is determined by the branching ratio of the excited state populated by the x-ray pulse. Our results are based on the observation that in ensembles of nuclei, cooperative excitation and decay leads to a greatly modified nuclear dynamics, which we characterize by a time-dependent cooperative branching ratio. We discuss prospects of steering the x-ray pumping by coherently controlling the cooperative decay. First, we study an ideal case with purely superradiant decay and perfect control of the cooperative emission. A numerical analysis of x-ray pumping in nuclear forward scattering with coherent control of the cooperative decay via externally applied magnetic fields is presented. Next, we provide an extended survey of nuclei suitable for our scheme, and propose proof-of-principle implementations already possible with typical M\"ossbauer nuclear systems such as 57Fe^{57}\mathrm{Fe}. Finally, we discuss the application of such control techniques to the population or depletion of long-lived nuclear states.Comment: 11 pages, 8 figures; updated to the published versio

    Interferometric phase detection at x-ray energies via Fano resonance control

    Get PDF
    Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.Comment: 5 pages, 3 figures, plus supplementary informatio

    Cooperative effects in nuclear excitation with coherent x-ray light

    Full text link
    The interaction between super-intense coherent x-ray light and nuclei is studied theoretically. One of the main difficulties with driving nuclear transitions arises from the very narrow nuclear excited state widths which limit the coupling between laser and nuclei. In the context of direct laser-nucleus interaction, we consider the nuclear width broadening that occurs when in solid targets, the excitation caused by a single photon is shared by a large number of nuclei, forming a collective excited state. Our results show that for certain isotopes, cooperative effects may lead to an enhancement of the nuclear excited state population by almost two orders of magnitude. Additionally, an update of previous estimates for nuclear excited state population and signal photons taking into account the experimental advances of the x-ray coherent light sources is given. The presented values are an improvement by orders of magnitude and are encouraging for the future prospects of nuclear quantum optics.Comment: 22 pages, 4 figures, 5 tables; updated to the published version, one additional results tabl

    Coherent control of collective nuclear quantum states via transient magnons

    Get PDF
    Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods below 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasi-particles enable accurate control of quantum systems embedded in condensed matter environments
    • 

    corecore