89 research outputs found

    Hyperspherical partial wave theory applied to electron hydrogen-atom ionization calculation for equal energy sharing kinematics

    Get PDF
    Hyperspherical partial wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of R\"oder \textit {et al} [51] and with the latest theoretical results of the ECS and CCC calculations [29] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large Θab\Theta_{ab} geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [35], it may be said that the hyperspherical partial wave theory is quite appropriate for the description of ionization events of electron-hydrogen type systems. It is also clear that the present approach in the implementation of the hyperspherical partial wave theory is very appropriate.Comment: 16 pages, 9 figures, LaTeX file and EPS figures. To appear in Phys. Rev.

    A microsatellite marker for yellow rust resistance in wheat

    Get PDF
    Bulk segregant analysis (BSA) was used to identify molecular markers associated with yellow rust disease resistance in wheat (Triticum aestivum L.). DNAs isolated from the selected yellow rust tolerant and susceptible F-2 individuals derived from a cross between yellow rust resistant and susceptible wheat genotypes were used to established a "tolerant" and a "susceptible" DNA pool. The BSA was then performed on these DNA pools using 230 markers that were previously mapped onto the individual wheat chromosomes. One of the SSR markers (Xgwm382) located on chromosome group 2 (A, B, D genomes) was present in the resistant parent and the resistant bulk but not in the susceptible parent and the susceptible bulk, suggesting that this marker is linked to a yellow rust resistance gene. The presence of Xgwm382 was also tested in 108 additional wheat genotypes differing in yellow rust resistance. This analysis showed that 81% of the wheat genotypes known to be yellow rust resistant had the Xgwm382 marker, further suggesting that the presence of this marker correlates with yellow rust resistance in diverse wheat germplasm. Therefore, Xgwm382 could be useful for marker assisted selection of yellow rust resistances genotypes in wheat breeding programs

    Determination of Population Structure of Wheat Core Collection for Association Mapping

    Get PDF
    The microsatellites, as one of the most robust markers for identification of wheat varieties, were used for assessment of genetic diversity and population structure to promote effective use of genetic resources. In this study, the set of 284 wheat varieties were genotyped using 30 microsatellite markers. The chosen SSR markers were located among almost all linkage groups and covered all three genomes. The genotypes used originate from 24 different breeding centers worldwide and are included in an extensive core collection of the Institute of Field and Vegetable Crops in Novi Sad, Serbia. The total number of detected alleles was 349 at all analyzed loci. The average number of detected allelic variant per locus was 11.5. The mean value of polymorphic information content was 0.68. According to the probability of data obtained by program Structure, the results have shown presence of 6 subpopulations within the studied set of genotypes. The population structure positively correlated to some extent with geographic origin. The available pedigree data were included for additional explanation of population structure. The results of this study should provide valuable information for future association studies using the diverse wheat breeding material

    A genetic analysis of aluminium tolerance in cereals

    Get PDF
    Aluminium (Al) toxicity is a major threat to agricultural production world wide wherever acid soil exists. Wheat and barley, the major food and feed crops, are severely affected and this necessitates investigations that could help to improve the yield by utilising the available genetic diversity for Al tolerance with the aid of several molecular platforms. We investigated the quantitative trait loci (QTL) conferring tolerance to Al toxicity in three different mapping populations of wheat and barley.Using a set of D genome (Ae. tauschii) introgression lines, a major Al tolerance locus was assigned to chromosome arm 4DL, explaining 31% of the phenotypic variation displayed by the population. A second major QTL was mapped to chromosome arm 3BL using a set of doubled haploid progeny lines. This major QTL, QaltCS.ipk-3B, originated from ‘Chinese Spring’ accounted for 49% of the variation in the population. The inheritance for Al tolerance in barley was dissected based on a genetic map constructed with genic markers. QTLs were identified on chromosomes 2H, 3H and 4H. A sequence homology search was used to derive the putative function of the genes linked to the QTL, in order to identify potential candidate genes for Al tolerance. Some of these candidates are implicated in stress/defence responses, in particular, stress signal transduction, transcription regulation factors and cell metabolism

    A comparative assessment of genetic diversity in cultivated barley collected in different decades of the last century in Austria, Albania and India by using genomic and genic simple sequence repeat (SSR) markers

    No full text
    Molecular investigations of qualitative and quantitative changes in the genetic diversity of cultivated crops are useful for plant breeding and the management of crop genetic resources. A genotyping study, based on 28 genomic (g-SSR) and 13 expressed sequence tag-derived (e-SSR) microsatellite markers uniformly distributed across the barley genome, was conducted on samples of cultivated barley (Hordeum vulgare L.) collected at intervals of 40–50 years in three comparable geographical regions in Austria, Albania and India. The analysis indicated an absence of any significant differences either in the total number of alleles per locus or in g-SSR and e-SSR polymorphic information content (PIC) values from the Indian and Austrian materials. However, a slight reduction in genetic diversity was noted among the materials collected in Albania. The trend in numbers of collection mission-specific SSR alleles suggests significant allele flow over the time interval sampled. The g-SSRs yielded a higher mean number of alleles per locus and a superior PIC than the e-SSR markers. We conclude that a qualitative, rather than a quantitative shift in diversity has taken place over time, and that g-SSR markers detect more diversity than do e-SSR markers

    Molecular tools for genebank management and evaluation

    Get PDF
    Molecular markers were developed for many species and enabled us to use them for the characterisation of genebank collections. We used the marker technology (microsatellites) for studying the genetic integrity of the self pollinating species wheat (Triticum aestivum L.) and the open pollinating species rye (Secale cereale L.). The study became possible, because at IPK both the ex situ collection, consisting of seeds from the most recent regeneration and a herbarium collection is maintained. In the herbarium collection from each accession samples of grains and complete spikes are deposited as vouchers when they are grown initially. For the wheat accessions investigated the comparison of the DNA fingerprints showed a high degree of idendity. No contamination due to foreign pollen or incorrect handling during the multiplication cycles was discovered. For the open pollinating species rye, however, major changes in allele frequencies were detected. Overall, nearly 50% of the alleles discovered in the original sample were not found in the material present in the ex situ collection now. In some cases alleles were detected in the most recently propagated subpopulations that were not observed in the investigated plants of the original one. In addition to the integrity studies we are in process of utilizing molecular markers for a marker assisted screening of genebank collections. Salt tolerance of barley has been shown as a case study in the present article

    High level of genetic diversity among spelt germplasm revealed by microsatellite markers.

    No full text
    The genetic diversity of spelt (Triticum aestivum (L.) Thell. subsp. spelta (L.) Thell.) cultivated presently is very narrow. Although the germplasm collections of spelt are extensive, the related genetic knowledge is often lacking and makes their use for genetic improvement difficult. The genetic diversity and structure of the spelt gene pool held in gene banks was determined using 19 simple sequence repeat (SSR) markers applied to 170 spelt accessions collected from 27 countries and 4 continents. The genetic distances (1 - proportion of shared alleles) were calculated and an unweighted pair-group method with arithmetic averaging (UPGMA)-based dendrogram was generated. The genetic diversity was high: 259 alleles were found and the mean interaccession genetic distance was 0.782 +/- 0.141. The dendrogram demonstrated the much higher genetic diversity of spelt held in germplasm collections than in the currently used genotypes. Accessions with the same geographical origin often tended to cluster together. Those from the Middle East were isolated first. All but one of the Spanish accessions were found in a unique subcluster. Most accessions from eastern Europe clustered together, while those from northwestern Europe were divided into two subclusters. The accessions from Africa and North America were not separated from the European ones. This analysis demonstrates the extent of genetic diversity of spelts held in germplasm collections and should help to widen the genetic basis of cultivated spelt in future breeding programs

    Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars

    No full text
    Diversity arrays technology (DArT) and simple sequence repeat (SSR) markers were applied to investigate population structure, extent of linkage disequilibrium and genetic diversity (kinship) on a genome-wide level in European barley (Hordeum vulgare L.) cultivars. A set of 183 varieties could be clearly distinguished into spring and winter types and was classified into five subgroups based on 253 DArT or 22 SSR markers. Despite the fact, that the same number of groups was revealed by both marker types, it could be shown that this grouping was more distinct for the SSRs than the DArTs, when assigned to a Q-matrix by STRUCTURE. This was supported by the findings from principal coordinate analysis, where the SSRs showed a better resolution according to seasonal habit and row number than the DArTs. A considerable influence on the rate of significant associations with malting and kernel quality parameters was revealed by different marker types in this genome-wide association study using general and mixed linear models considering population structure. Fewer spurious associations were observed when population structure was based on SSR rather than on DArT markers. We therefore conclude that it is advisable to use independent marker datasets for calculating population structure and for performing the association analysis

    The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population SolitĂ€r × Mazurka

    No full text
    Breeding for resistance to Septoria tritici blotch (STB), caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is an essential component in controlling this important foliar disease of wheat. Inheritance of seedling resistance to seven worldwide pathogen isolates has been studied in a doubled-haploid (DH) population derived from a cross between the field resistant cultivar SolitÀr and the susceptible cultivar Mazurka. Multiple quantitative trait locus (QTL) mapping revealed major and minor genetic effects on resistance as well as several epistatic relationships in the seedling stage. SolitÀr conferred resistance to isolate IPO323, governed by Stb6 on chromosome 3A, as well as to IPO99015, IPO92034, Hu1 and Hu2 controlled by a QTL on chromosome arm 1BS, possibly corresponding to Stb11 and minor QTL on chromosomes 1B, 3D, 6B and 7D. Resistance of Mazurka to IPO90015 and BBA22 was caused by a QTL located in a region on 4AL which harbours Stb7 or Stb12. QTL specific to pycnidial coverage on 3B and specific to necrosis on 1A could be discovered for isolate IPO92034. Pairwise epistatic interactions were reliably detected with five isolates. Although their contributions to the total variance are generally low, the genotypic effect of the QTL by QTL interaction of 4AL (Stb7 or Stb12) and 3AS (Stb6) made up almost 15% of disease expression. Altogether, the results suggest a complex inheritance of resistance to STB in the seedling stage in terms of isolate-specificity and resistance mechanisms, which have implications for marker-assisted breeding in an attempt to pyramid STB resistance genes
    • 

    corecore