562 research outputs found

    Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose X-irradiation

    Get PDF
    Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice

    Influence of strain on magnetization and magnetoelectric effect in La0.7A0.3MnO3 / PMN-PT(001) (A = Sr; Ca)

    Full text link
    We investigate the influence of a well-defined reversible biaxial strain <=0.12 % on the magnetization (M) of epitaxial ferromagnetic manganite films. M has been recorded depending on temperature, strain and magnetic field in 20 - 50 nm thick films. This is accomplished by reversibly compressing the isotropic in-plane lattice parameter of the rhombohedral piezoelectric 0.72PMN-0.28PT (001) substrates by application of an electric field E <= 12 kV cm-1. The magnitude of the total variable in-plane strain has been derived. Strain-induced shifts of the ferromagnetic Curie temperature (Tc) of up to 19 K were found in La0.7Sr0.3MnO3 (LSMO) and La0.7Ca0.3MnO3 films and are quantitatively analysed for LSMO within a cubic model. The observed large magnetoelectric coupling coefficient alpha=mu0 dM/dE <= 6 10-8 s m-1 at ambient temperature results from the strain-induced M change in the magnetic-film-ferroelectric-substrate system. It corresponds to an enhancement of mu0 DeltaM <= 19 mT upon biaxial compression of 0.1 %. The extraordinary large alpha originates from the combination of three crucial properties: (i) the strong strain dependence of M in the ferromagnetic manganites, (ii) large piezo-strain of the PMN-PT substrates and (iii) effective elastic coupling at the film-substrate interface.Comment: 15 pages, 6 figures, 1 tabl

    Weer, konijn en haas

    Get PDF
    Sneeuw en ijs: de winter is voor veel dieren een moeilijke tijd. Zo ook voor hazen en konijnen. De weersomstandigheden kunnen een behoorlijke invloed hebben op overleving van deze dieren, maar bijvoorbeeld ook op het succes van de voortplanting. Om te achterhalen hoe dat precies werkt op populatieniveau analyseerden Heiko Rödel en Jasja Dekker bijna 30 jaar aan afschotgegevens uit Nederland en Duitsland. Zij combineerden deze jachtstatistieken met weersgegevens van de metereologische diensten van beide landen. Eerst hebben ze voor beide soorten de langdurige trends geanalyseerd. Hieruit bleek dat hazen de afgelopen 28 jaar in Nederland en Duitsland gestaag zijn afgenomen. De belangrijkste oorzaak van deze langdurige negatieve trend moet gezocht worden in de intensivering van de landbouw, al is bekend dat ook ziekten, predatoren, en weer invloed hebben op de populatiedynamiek van hazen. De konijnendata vertonen door de komst van het Viraal Haemorhagisch Syndroom een afname na 1990. Door de ontwikkeling van resistentie tegen deze ziekte is er de afgenomen jaren weer een toename. De volgende stap was het bepalen van effecten van regen en van kou op de konijnen- en hazenpopulaties. Regen heeft een duidelijke invloed. De aantallen geschoten hazen, en dus de hazenpopulatie is lager in jaren met hogere hoeveelheden neerslag tijdens de zomer en/of herfst in het jaar ervoor. De stand van de konijnen populatie zit nog wat ingewikkelder in elkaar. Naast het negatieve effect van de regen in de lente in het jaar van afschot, werkten regen en kou samen in op de konijnenpopulatie. De konijnenstand werd lager door lage temperaturen in de voorgaande winter, maar alleen als er tijdens de lente van het vorige jaar veel neerslag was

    The impact of nitrogen mobility on the activity of zirconium oxynitride catalysts for ammonia decomposition

    Get PDF
    A zirconium oxynitride catalyst was used for the decomposition of ammonia to hydrogen and nitrogen. The onset of catalytic activity at 550 °C coincided with the onset of nitrogen ion mobility in the material and a phase change from the initial β′ phase ( Zr7O11N2) to the nitrogen-rich β″ ZrON phase ( Zr7O9,5N3). No hydrazine formation during an extended time on stream was detectable. Moreover, the onset of activity was also correlated to a rapid change in the electronic structure of the surface accompanying formation of the more active β″ ZrON phase. The results presented here show for the first time a direct correlation among the onset of ion conductivity as a bulk property, a modified electronic structure of the surface, and the catalytic performance of a heterogeneous catalyst

    In situ electric field induced domain evolution in Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3ferroelectrics

    Get PDF
    In this work, the lead-free Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3piezoelectric ceramic was investigated in situ under an applied electric field by transmission electron microscopy. Significant changes in domain morphology of the studied material have been observed under an applied electric field. During the poling process, the domain configurations disappeared, forming a single-domain state. This multi- to single-domain state transition occurred with the formation of an intermediate nanodomain state. After removing the electric field, domain configurations reappeared. Selected area electron diffraction during electrical poling gave no indication of any structural changes as for example reflection splitting. Rather, a contribution of the extrinsic effect to the piezoelectric response of the Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3was found to be dominant.open2

    The LHC superconducting cavities

    Get PDF
    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported

    Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics

    Get PDF
    Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1-x-y) (Bi1/2 Na1/2) TiO3 -x BaTiO3 -y (K0.5 Na0.5) NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94 (Bi1/2 Na1/2) TiO3 -0.05 BaTiO3 -0.01 (K0.5 Na0.5) NbO3 ceramic (largely ferroelectric), with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91 (Bi1/2 Na1/2) TiO3 -0.07 BaTiO3 -0.02 (K0.5 Na0.5) NbO3 ceramic (largely nonferroelectric) possesses characteristics of a relaxor ferroelectric ceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state.open291

    Hubbard band or oxygen vacancy states in the correlated electron metal SrVO3_3?

    Full text link
    We study the effect of oxygen vacancies on the electronic structure of the model strongly correlated metal SrVO3_3. By means of angle-resolved photoemission (ARPES) synchrotron experiments, we investigate the systematic effect of the UV dose on the measured spectra. We observe the onset of a spurious dose-dependent prominent peak at an energy range were the lower Hubbard band has been previously reported in this compound, raising questions on its previous interpretation. By a careful analysis of the dose dependent effects we succeed in disentangling the contributions coming from the oxygen vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard band remains. We support our study by means of state-of-the-art ab initio calculations that include correlation effects and the presence of oxygen vacancies. Our results underscore the relevance of potential spurious states affecting ARPES experiments in correlated metals, which are associated to the ubiquitous oxygen vacancies as extensively reported in the context of a two-dimensional electron gas (2DEG) at the surface of insulating d0d^0 transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure
    corecore