368 research outputs found

    Towards Analyzing Semantic Robustness of Deep Neural Networks

    Full text link
    Despite the impressive performance of Deep Neural Networks (DNNs) on various vision tasks, they still exhibit erroneous high sensitivity toward semantic primitives (e.g. object pose). We propose a theoretically grounded analysis for DNN robustness in the semantic space. We qualitatively analyze different DNNs' semantic robustness by visualizing the DNN global behavior as semantic maps and observe interesting behavior of some DNNs. Since generating these semantic maps does not scale well with the dimensionality of the semantic space, we develop a bottom-up approach to detect robust regions of DNNs. To achieve this, we formalize the problem of finding robust semantic regions of the network as optimizing integral bounds and we develop expressions for update directions of the region bounds. We use our developed formulations to quantitatively evaluate the semantic robustness of different popular network architectures. We show through extensive experimentation that several networks, while trained on the same dataset and enjoying comparable accuracy, do not necessarily perform similarly in semantic robustness. For example, InceptionV3 is more accurate despite being less semantically robust than ResNet50. We hope that this tool will serve as a milestone towards understanding the semantic robustness of DNNs.Comment: Presented at European conference on computer vision (ECCV 2020) Workshop on Adversarial Robustness in the Real World ( https://eccv20-adv-workshop.github.io/ ) [best paper award]. The code is available at https://github.com/ajhamdi/semantic-robustnes

    Quantum groups and deformed special relativity

    Get PDF
    The structure and properties of possible qq-Minkowski spaces is discussed, and the corresponding non-commutative differential calculi are developed in detail and compared with already existing proposals. This is done by stressing its covariance properties as described by appropriate reflection equations. Some isomorphisms among the space-time and derivative algebras are demonstrated, and their representations are described briefly. Finally, some physical consequences and open problems are discussed

    Intimidades taurinas y el arte de torear de Ricardo Torres "Bombita"

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 201

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator

    Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO<sub>2</sub>, H<sub>2</sub>O and dimethyl sulfide

    Get PDF
    Isoprene is the dominant global biogenic volatile organic compound (VOC) emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs), which have recently been shown to be potentially important oxidants for SO2 and NO2 in the atmosphere; however the significance of this chemistry for SO2 processing (affecting sulfate aerosol) and NO2 processing (affecting NOx levels) depends critically upon the fate of the SCIs with respect to reaction with water and decomposition. Here, we have investigated the removal of SO2 in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene-derived SCIs with H2O. Under excess SO2 conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (+/-0.03). The observed SO2 removal kinetics are consistent with a relative rate constant, k (SCI + H2O) = k (SCI + SO2), of 3.1 (+/-0.5) x 10(-5) for isoprene-derived SCIs. The relative rate constant for k (SCI decomposition) = k (SCI + SO2) is 3.0 (+/-3.2) x 10(11) cm(-3). Uncertainties are +/-2 sigma and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprenederived SCIs are unlikely to make a substantial contribution to gas-phase SO2 oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO2 removal in the isopreneozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCIs and dimethyl sulfide (DMS); the observed SO2 removal kinetics are consistent with a relative rate constant, k (SCI + DMS) = k (SCI + SO2), of 3.5 (+/-1.8). This result suggests that SCIs may contribute to the oxidation of DMS in the atmosphere and that this process could therefore influence new particle formation in regions impacted by emissions of unsaturated hydrocarbons and DMS

    Catheter Ablation Outcome Prediction With Advanced Time-Frequency Features of the Fibrillatory Waves From Patients in Persistent Atrial Fibrillation

    Full text link
    [EN] Although catheter ablation (CA) is still the first-line treatment for persistent atrial fibrillation (AF) patients, its limited long-term success rate has motivated clinical interest in preoperative prediction on the procedure¿s outcome to provide optimized patient selection, limit repeated procedures, hospitalization rates, and treatment costs. To this respect, dominant frequency (DF) and amplitude of fibrillatory waves (f-waves) reflected on the ECG have provided promising results. Hence this work explores the ability of a novel set of frequency and amplitud f-waves features, such as spectral entropy (SE), spectral flatness measure (SFM), and amplitud spectrum area (AMSA), along with DF and normalized f-wave amplitude (NFWA), to improve CA outcome prediction. Despite all single indices reported statistically significant differences between patients who relapsed to AF and those who maintained sinus rhythm after a follow-up of 9 months for 204 6 s-length ECG intervals extracted from 51 persistent AF patients, they obtained a limited discriminant ability ranging between 55 and 62%, which was overcome by 15¿23% when NFWA, SE and AMSA were combined. Consequently, this combination of frequency and amplitude features of the fwaves seems to provide new insights about the atrial substrate remodeling, which could be helpful in improving preoperative CA outcome prediction.This research has been supported by grants DPI201783952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-la Mancha and AICO/2019/036 from Generalitat Valenciana. Moreover, Pilar Escribano holds a graduate research scholarship from University of Castilla-La ManchaEscribano, P.; Ródenas, J.; Arias, MA.; Langley, P.; Rieta, JJ.; Alcaraz, R. (2020). Catheter Ablation Outcome Prediction With Advanced Time-Frequency Features of the Fibrillatory Waves From Patients in Persistent Atrial Fibrillation. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.396S1

    A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework

    Full text link
    [EN] Today industries do not only require fast simulation techniques but also verification techniques for the simulations. The proper generalized decomposition (PGD) has been situated as a suitable tool for fast simulation for many physical phenomena. However, so far, verification tools for the PGD are under development. The PGD approximation error mainly comes from two different sources. The first one is related with the truncation of the PGD approximation and the second one is related with the discretization error of the underlying numerical technique. In this work we propose a fast error indicator technique based on recovery techniques, for the discretization error of the numerical technique used by the PGD technique, for refinement purposes.Authors 5 and 6 thank the financial support of the research Project DPI2013-46317-R of the Ministerio de Economia y Competitividad (Spain). The funding from Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. These authors also thank the support of the Framework Programme 7 Initial Training Network Funding under Grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology".Nadal, E.; Leygue, A.; Chinesta, F.; Beringhier, M.; Ródenas, J.; Fuenmayor Fernández, FJ. (2015). A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework. Computational Mechanics. 55(2):251-266. https://doi.org/10.1007/s00466-014-1097-yS251266552Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non-Newton Fluid Mech 144:98–121Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404Giner E, Bognet B, Ródenas JJ, Leygue A, Fuenmayor FJ, Chinesta F (2013) The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. Int J Solids Struct 50:1710–1720Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166(11):578–592Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199(25–28):1872–1880Moitinho de Almeida JP (2013) A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics. Int J Numer Methods Eng 94:961–984Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201–204:1–12Bognet B, Leygue A, Chinesta F (2014) Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci 1(1):1–4Ghnatios C, Chinesta F, Binetruy C (2013) 3D modeling of squeeze flows occurring in composite laminates. Int J Mater Form 9(1):1–11Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer Publishing Company, New York IncorporatedDonea J, Huerta A (2002) Finite element methods for flow problems. Wiley, New YorkGonzalez D, Cueto E, Chinesta F, Diez P, Huerta A (2013) SUPG-based stabilization of proper generalized decompositions for high-dimensional advection-diffusion equations. Int J Numer Methods Eng 94(13):1216–1232Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20:31–59Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7):1331–1364Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3):443–472Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and equilibrium. Int J Numer Methods Eng 36(16):2703–2724Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20):3417–3440Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621Nadal E, (2014) Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization. PhD thesis, Universitat Politècnica de ValènciaKarihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81(3):119–129González-Estrada OA, Ródenas JJ, Chinesta F, Fuenmayor FJ (2013) Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Comput Mech 52:321–344Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061Fuenmayor F, Restrepo J, Tarancón J, Baeza L (2001) Error estimation and h-adaptive refinement in the analysis of natural frequencies. Finite Elem Anal Des 38:137–15

    Symbiosis of the endangered Lupinus mariae-josephae lupin especies: Successful "in situ" propagation with rhizobial inoculation

    Full text link
    Region, in Eastern Spain. This lupine thrives in alkaline soils with high pH, a unique habitat for lupines. In these soils, Lmj grows in just a few defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. A legislative decree (70/2009, page 20156 Anex I) published in the el 'Diario Oficial de la Comunitat Valenciana' shows Lmj in a category corresponding, in the latest version of the Red List of IUCN (IUCN, 2012) (International Union for Conservation of Nature and Nature Resources), to an ?Endangered? legume species not extinct in the wild. Most current IUCN criteria used to define rare, small-range legume species, are based on history of reproductive traits such as number of pods and seeds. We have previously shown that Lmj plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes. Greenhouse experiments using Lmj trap-plants showed an absence, or very low concentration, of Lmj-nodulating bacteria in ?terra rossa? soils of Valencia outside of Lmj plant patches. No Lmj endosymbiotic bacteria were found in ?terra rossa? or alkaline red soils outside the Valencia Lmj endemism region in the Iberian Peninsula or Balearic Islands. Among the rhizobia able to establish an efficient symbiosis with L. mariae-josephae plants, two Bradyrhizobium sp. strains, LmjC and LmjM3, were selected as inocula for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural Lmj populations, and successful reproduction of the plant was achieved. Interestingly, the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia, and optimal performance was observed in plants inoculated with LmjC, a strain that had previously shown the most efficient behavior under controlled conditions. These results define conditions for L. mariae-josephae conservation and for extension to alkaline-limed soil habitats, where no other known lupine can thrive. Broadly speaking, the work singularly identified the rhizobial symbiosis as a factor affecting the conservation of legumes and often being exceedingly vulnerable to threats. Our results also indicate that seed inoculation with N2-fixing, efficient Rhizobium strains is a strategy to consider in the conservation of endangered legume specie

    Elevated atmospheric CO2 modifies responses to water-stress and flowering of Mediterranean desert truffle mycorrhizal shrubs

    Get PDF
    Predicted increases in atmospheric concentration of carbon dioxide (CO2) coupled with increased temperatures and drought are expected to strongly influence the development of most of the plant species in the world, especially in areas with high risk of desertification like the Mediterranean basin. Helianthemum almeriense is an ecologically important Mediterranean shrub with an added interest because it serves as the host for the Terfezia claveryi mycorrhizal fungus, which is a desert truffle with increasingly commercial interest. Although both plant and fungi are known to be well adapted to dry conditions, it is still uncertain how the increase in atmospheric CO2 will influence them. In this article we have addressed the physiological responses of H. almeriense × T. claveryi mycorrhizal plants to increases in atmospheric CO2 coupled with drought and high vapor pressure deficit. This work reports one of the few estimations of mesophyll conductance in a drought deciduous Mediterranean shrub and evaluates its role in photosynthesis limitation. High atmospheric CO2 concentrations help desert truffle mycorrhizal plants to cope with the adverse effects of progressive drought during Mediterranean springs by improving carbon net assimilation, intrinsic water use efficiency and dispersal of the species through increased flowering events
    corecore