6 research outputs found

    Homeostatic and Tissue Reparation Defaults in Mice Carrying Selective Genetic Invalidation of CXCL12/Proteoglycan Interactions.

    Get PDF
    International audienceBACKGROUND: Interaction with heparan sulfate proteoglycans is supposed to provide chemokines with the capacity to immobilize on cell surface and extracellular matrix for accomplishing both tissue homing and signaling of attracted cells. However, the consequences of the exclusive invalidation of such interaction on the roles played by endogenous chemokines in vivo remain unascertained. METHODS AND RESULTS: We engineered a mouse carrying a Cxcl12 gene (Cxcl12(Gagtm)) mutation that precludes interactions with heparan sulfate structures while not affecting CXCR4-dependent cell signaling of CXCL12 isoforms (α, β, γ). Cxcl12(Gagtm/Gagtm) mice develop normally, express normal levels of total and isoform-specific Cxcl12 mRNA, and show increased counting of circulating CD34(+) hematopoietic precursor cells. After induced acute ischemia, a marked impaired capacity to support revascularization was observed in Cxcl12(Gagtm/Gagtm) animals associated with a reduced number of infiltrating cells in the ischemic tissue despite the massive expression of CXCL12 isoforms. Importantly, exogenous administration of CXCL12γ, which binds heparan sulfate with the highest affinity ever reported for a cytokine, fully restores vascular growth, whereas heparan sulfate-binding CXCL12γ mutants failed to promote revascularization in Cxcl12(Gagtm/Gagtm) animals. CONCLUSION: These findings prove the role played by heparan sulfate interactions in the functions of CXCL12 in both homeostasis and physiopathological settings and document for the first time the paradigm of chemokine immobilization in vivo

    Regulatory T cells modulate postischemic neovascularization

    No full text
    CD4+ and CD8+ T lymphocytes are key regulators of postischemic neovascularization. T-cell activation is promoted by 2 major costimulatory signalings, the B7/CD28 and CD40-CD40 ligand pathways. Interestingly, CD28 interactions with the structurally related ligands B7-1 and B7-2 are also required for the generation and homeostasis of CD4+CD25+ regulatory T cells (Treg cells), which play a critical role in the suppression of immune responses and the control of T-cell homeostasis. We hypothesized that Treg cell activation may modulate the immunoinflammatory response to ischemic injury, leading to alteration of postischemic vessel growth. Ischemia was induced by right femoral artery ligation in CD28-, B7-1/2-, or CD40-deficient mice (n=10 per group). CD40 deficiency led to a significant reduction in the postischemic inflammatory response and vessel growth. In contrast, at day 21 after ischemia, angiographic score, foot perfusion, and capillary density were increased by 2.0-, 1.2-, and 1.8-fold, respectively, in CD28-deficient mice, which showed a profound reduction in the number of Treg cells compared with controls. Similarly, disruption of B7-1/2 signaling or anti-CD25 treatment and subsequent Treg deletion significantly enhanced postischemic neovascularization. These effects were associated with enhanced accumulation of CD3-positive T cells and Mac-3-positive macrophages in the ischemic leg. Conversely, treatment of CD28(-/-) mice with the nonmitogenic anti-CD3 monoclonal antibody enhanced the number of endogenous Treg cells and led to a significant reduction of the postischemic inflammatory response and neovascularization. Finally, coadministration of Treg cells and CD28(-/-) splenocytes in Rag1(-/-) mice with hindlimb ischemia abrogated the CD28(-/-) splenocyte-induced activation of the inflammatory response and neovascularization. Treg cell response modulates postischemic neovascularizatio

    Microparticles from ischemic muscle promotes postnatal vasculogenesis.

    No full text
    International audienceBACKGROUND: We hypothesized that microparticles (MPs) released after ischemia are endogenous signals leading to postischemic vasculogenesis. METHODS AND RESULTS: MPs from mice ischemic hind-limb muscle were detected by electron microscopy 48 hours after unilateral femoral artery ligation as vesicles of 0.1- to 1-microm diameter. After isolation by sequential centrifugation, flow cytometry analyses showed that the annexin V(+) MP concentration was 3.5-fold higher in ischemic calves than control muscles (1392+/-406 versus 394+/-180 annexin V(+) MPs per 1 mg; P<0.001) and came mainly from endothelial cells (71% of MPs are CD(144+)). MPs isolated from ischemic muscles induced more potent in vitro bone marrow-mononuclear cell (BM-MNC) differentiation into cells with endothelial phenotype than those isolated from control muscles. MPs isolated from atherosclerotic plaques were ineffective, whereas those isolated from apoptotic or interleukin-1beta-activated endothelial cells also promoted BM-MNC differentiation. Interestingly, MPs from ischemic muscles produced more reactive oxygen species and expressed significantly higher levels of NADPH oxidase p47 (6-fold; P<0.05) and p67 subunits (16-fold; P<0.001) than controls, whereas gp91 subunit expression was unchanged. BM-MNC differentiation was reduced by 2-fold with MPs isolated from gp91-deficient animals compared with wild-type mice (P<0.05). MP effects on postischemic revascularization were then examined in an ischemic hind-limb model. MPs isolated from ischemic muscles were injected into ischemic legs in parallel with venous injection of BM-MNCs. MPs increased the proangiogenic effect of BM-MNC transplantation, and this effect was blunted by gp91 deficiency. In parallel, BM-MNC proangiogenic potential also was reduced in ABCA1 knockout mice with impaired vesiculation. CONCLUSIONS: MPs produced during tissue ischemia stimulate progenitor cell differentiation and subsequently promote postnatal neovascularization

    Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy

    No full text
    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease
    corecore