13 research outputs found

    Probing the high momentum component of the deuteron at high Q^2

    Full text link
    The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle theta_nq and to extract missing momentum distributions for fixed values of theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg) recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.Comment: 5 pages, 2 figure

    Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering

    Get PDF
    We present the first measurements of the \vec{e}p->epg cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region. The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross section indicates the twist-2 dominance of DVCS, proving that generalized parton distributions (GPDs) are accessible to experiment at moderate Q^2. The helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We present the first model-independent measurement of linear combinations of GPDs and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication. References added. One figure remove

    Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime

    Full text link
    We present measurements of the ep->ep pi^0 cross section extracted at two values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson Lab Hall A. The kinematic range allows to study the evolution of the extracted hadronic tensor as a function of Q^2 and W. Results will be confronted with Regge inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering has also been attempted

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Inclusive photon production at forward rapidities in proton-proton collisions at s\sqrt{s} = 0.9, 2.76 and 7 TeV

    Get PDF
    See paper for full list of authors – 24 pages, 10 captioned figures, 4 tables, authors from page 19, figures at http://aliceinfo.cern.ch/ArtSubmission/node/1024International audienceThe multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities (2.3<η<3.92.3 < \eta < 3.9) in proton-proton collisions at three center-of-mass energies, s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2% ±\pm 0.3% (stat) ±\pm 8.8% (sys) and 61.2% ±\pm 0.3% (stat) ±\pm 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range

    Contenu étrange du nucléon

    No full text
    Une image simple du proton est de le décrire en termes de trois quarks de valences de deux saveurs différentes : up et down. Dans cette image, ces trois quarks doivent permettent de reproduire toutes les propriétés du proton, comme sa masse, son spin etc. Dans les années quatre-vingt, les physiciens ont trouvé que ce n'était pas le cas, laissant la porte ouverte à de nouvelles hypothèses. La plus communément acceptée est la contribution non négligeable de quarks fugitifs dont fait partie le quark étrange

    Activités au LPSC

    No full text
    International audienc

    Contenu étrange du nucléon

    No full text
    Une image simple du proton est de le décrire en termes de trois quarks de valences de deux saveurs différentes : up et down. Dans cette image, ces trois quarks doivent permettent de reproduire toutes les propriétés du proton, comme sa masse, son spin etc. Dans les années quatre-vingt, les physiciens ont trouvé que ce n'était pas le cas, laissant la porte ouverte à de nouvelles hypothèses. La plus communément acceptée est la contribution non négligeable de quarks fugitifs dont fait partie le quark étrange

    Results from the forward G0 experiment

    No full text
    International audienceThe G0 experiment is dedicated to the determination of the strange quark contribution to the electric and magnetic nucleon form factors for a large range of momentum transfers between 0.1 to 1(GeV/c)2 . This information is provided by the asymmetries of cross-sections measured with longitudinally polarized electrons in elastic electron-proton scattering and quasi-elastic electron-deuteron scattering. A set of measurements at two different Q2 will allow the complete separation of the electric and magnetic weak, as well as axial nucleon form factors. This report summarizes the physics case, gives details about the dedicated set-up used, and shows the results of the combination of the strange quark contribution in the electric and magnetic form factors of the protons. The experiment was performed at the Jefferson Laboratory, during years 2003 and 2004, and will be completed after backward-angle measurements in 2006, 2007
    corecore