1,641 research outputs found

    Interaction-Induced Spin Polarization in Quantum Dots

    Get PDF
    The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure

    Rectangular quantum dots in high magnetic fields

    Get PDF
    We use density-functional methods to study the effects of an external magnetic field on two-dimensional quantum dots with a rectangular hard-wall confining potential. The increasing magnetic field leads to spin polarization and formation of a highly inhomogeneous maximum-density droplet at the predicted magnetic field strength. At higher fields, we find an oscillating behavior in the electron density and in the magnetization of the dot. We identify a rich variety of phenomena behind the periodicity and analyze the complicated many-electron dynamics, which is shown to be highly dependent on the shape of the quantum dot.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    BACK-REACTION IN RELATIVISTIC COSMOLOGY

    Get PDF
    We introduce the concept of back-reaction in relativistic cosmological modeling. Roughly speaking, this can be thought of as the difference between the large-scale behavior of an inhomogeneous cosmological solution of Einstein’s equations, and a homogeneous and isotropic solution that is a best-fit to either the average of observables or dynamics in the inhomogeneous solution. This is sometimes paraphrased as “the effect that structure has of the large-scale evolution of the universe.” Various different approaches have been taken in the literature in order to try and understand back-reaction in cosmology. We provide a brief and critical summary of some of them, highlighting recent progress that has been made in each case

    Geometric and impurity effects on quantum rings in magnetic fields

    Full text link
    We investigate the effects of impurities and changing ring geometry on the energetics of quantum rings under different magnetic field strengths. We show that as the magnetic field and/or the electron number are/is increased, both the quasiperiodic Aharonov-Bohm oscillations and various magnetic phases become insensitive to whether the ring is circular or square in shape. This is in qualitative agreement with experiments. However, we also find that the Aharonov-Bohm oscillation can be greatly phase-shifted by only a few impurities and can be completely obliterated by a high level of impurity density. In the many-electron calculations we use a recently developed fourth-order imaginary time projection algorithm that can exactly compute the density matrix of a free-electron in a uniform magnetic field.Comment: 8 pages, 7 figures, to appear in PR

    The Spatial Averaging Limit of Covariant Macroscopic Gravity - Scalar Corrections to the Cosmological Equations

    Get PDF
    It is known that any explicit averaging scheme of the type essential for describing the large scale behaviour of the Universe, must necessarily yield corrections to the Einstein equations applied in the Cosmological setting. The question of whether or not the resulting corrections to the Einstein equations are significant, is still a subject of debate, partly due to possible ambiguities in the averaging schemes available. In particular, it has been argued in the literature that the effects of averaging could be gauge artifacts. We apply the formalism of Zalaletdinov's Macroscopic Gravity (MG) which is a fully covariant and nonperturbative averaging scheme, in an attempt to construct gauge independent corrections to the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) equations. We find that whereas one cannot escape the problem of dependence on \emph{one} gauge choice -- which is inherent in the assumption of large scale homogeneity and isotropy -- it is however possible to construct \emph{spacetime scalar} corrections to the standard FLRW equations. This partially addresses the criticism concerning the corrections being gauge artifacts. For a particular initial choice of gauge which simplifies the formalism, we explicitly construct these scalars in terms of the underlying inhomogeneous geometry, and incidentally demonstrate that the formal structure of the corrections with this gauge choice is identical to that of analogous corrections derived by Buchert in the context of spatial averaging of scalars.Comment: 18 pages, no figures, revtex4; v2 - minor clarifications added; v3 - minor changes in presentation to improve clarity, reference added, to appear in Phys. Rev.

    Exchange-energy functionals for finite two-dimensional systems

    Full text link
    Implicit and explicit density functionals for the exchange energy in finite two-dimensional systems are developed following the approach of Becke and Roussel [Phys. Rev. A 39, 3761 (1989)]. Excellent agreement for the exchange-hole potentials and exchange energies is found when compared with the exact-exchange reference data for the two-dimensional uniform electron gas and few-electron quantum dots, respectively. Thereby, this work significantly improves the availability of approximate density functionals for dealing with electrons in quasi-two-dimensional structures, which have various applications in semiconductor nanotechnology.Comment: 5 pages, 3 figure

    Gaussian approximations for the exchange-energy functional of current-carrying states: Applications to two-dimensional systems

    Full text link
    Electronic structure calculations are routinely carried out within the framework of density-functional theory, often with great success. For electrons in reduced dimensions, however, there is still a need for better approximations to the exchange-correlation energy functional. Furthermore, the need for properly describing current-carrying states represents an additional challenge for the development of approximate functionals. In order to make progress along these directions, we show that simple and efficient expressions for the exchange energy can be obtained by considering the short-range behavior of the one-body spin-density matrix. Applications to several two-dimensional systems confirm the excellent performance of the derived approximations, and verify the gauge-invariance requirement to be of great importance for dealing with current-carrying states

    Exchange-correlation orbital functionals in current-density-functional theory: Application to a quantum dot in magnetic fields

    Full text link
    The description of interacting many-electron systems in external magnetic fields is considered in the framework of the optimized effective potential method extended to current-spin-density functional theory. As a case study, a two-dimensional quantum dot in external magnetic fields is investigated. Excellent agreement with quantum Monte Carlo results is obtained when self-interaction corrected correlation energies from the standard local spin-density approximation are added to exact-exchange results. Full self-consistency within the complete current-spin-density-functional framework is found to be of minor importance.Comment: 5 pages, 2 figures, submitted to PR

    Scale dependence of cosmological backreaction

    Full text link
    Due to the non-commutation of spatial averaging and temporal evolution, inhomogeneities and anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological backreaction mechanism. We study the backreaction effect as a function of averaging scale in a perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which 10% effects show up from averaging at different orders. The dominant contribution comes from the averaged spatial curvature, observable up to scales of 200 Mpc. The cosmic variance of the local Hubble rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from Newtonian cosmology and Hubble Space Telescope Key Project data.Comment: 6 pages, 2 figures; v3: substantial modifications, new figure

    Effective inhomogeneous inflation: curvature inhomogeneities of the Einstein vacuum

    Get PDF
    We consider spatially averaged inhomogeneous universe models and argue that, already in the absence of sources, an effective scalar field arises through foliating and spatially averaging inhomogeneous geometrical curvature invariants of the Einstein vacuum. This scalar field (the `morphon') acts as an inflaton, if we prescribe a potential of some generic form. We show that, for any initially negative average spatial curvature, the morphon is driven through an inflationary phase and leads - on average - to a spatially flat, homogeneous and isotropic universe model, providing initial conditions for pre-heating and, by the same mechanism, a possibly natural self-exit.Comment: 9 pages, 2 figures, to appear in Class. Quant. Grav. as Fast Track Communicatio
    • …
    corecore