46 research outputs found
Ethno Botanical Survey of Plants Used For Malaria Treatment in Igboora, Ibarapa Central Local Government of Oyo State, Nigeria
Malaria remains a global scourge particularly in Nigerian rural areas where sanitation is poor and access to health facilities is also poor. An ethnobotanical survey was conducted in Igboora, Ibarapa Central North Local Government Area of Oyo State on latitude 7. 53° and longitude 3.08°. A semi structured questionnaire was administered on thirty three respondents in the study area. Information obtained included the plants used in the treatment of malaria, parts used, time of collection, the availability of the plants, mode of preparation and mode of administration. The respondents were mostly males ranged from 30 to 92 years and were mainly herbalists, farmers and teachers. Twenty eight recipes were obtained from the respondents while thirty three plant species were documented for the management and treatment of malaria in the study area. The plants belong to 25 families. Two plants, Carica papaya and Cymbopogon citratus were particularly very common in the recipes with a percentage occurrence of 70%.The more prominent families in the recipes obtained were the Asteraceae, Meliaceae, Rutaceae, Anarcadiaceae, Euphorbiaceae, Poaceae and Fabaceae. The major mode of preparation is mainly by concoction while infusion or decoction may be used in a few cases. Leaves are the most common plant parts used although the bark or whole plants are used in some cases. The juice from Citrus aurantifolia and water from fermented seeds of Zea mays in most cases constitute the solvent in which other plants are boiled. The lists of plant and recipes obtained are provided.
This study highlights potential sources for the development of new antimalaria drugs from indigenous medicinal plants found in Igboora, Nigeria
A NSFD discretization of two-dimensional singularly perturbed semilinear convection-diffusion problems
Despite the availability of an abundant literature on singularly perturbed problems,
interest toward non-linear problems has been limited. In particular, parameter-uniform
methods for singularly perturbed semilinear problems are quasi-non-existent. In this
article, we study a two-dimensional semilinear singularly perturbed convection-diffusion
problems. Our approach requires linearization of the continuous semilinear problem
using the quasilinearization technique. We then discretize the resulting linear problems
in the framework of non-standard finite difference methods. A rigorous convergence
analysis is conducted showing that the proposed method is first-order parameter-uniform
convergent. Finally, two test examples are used to validate the theoretical findings
Recommended from our members
Analysis of the variability of airborne particulate matter with prevailing meteorological conditions across a semi-urban environment using a network of low-cost air quality sensors.
The concentrations of fine and coarse fractions of airborne particulate matter (PM) and meteorological variables (wind speed, wind direction, temperature and relative humidity) were measured at six selected locations in Ile Ife, a prominent university town in Nigeria using a network of low-cost air quality (AQ) sensor units. The objective of the deployment was to collate baseline air quality data and assess the impact of prevailing meteorological conditions on PM concentrations in selected residential communities downwind of an iron smelting facility. The raw data obtained from OPC-N2 of the AQ sensor units was corrected using the RH correction factor developed based k-Kohler theory. This PM (corrected) fast time resolution data (20 s) from the AQ sensor units were used to create daily averages. The overall mean mass concentrations for PM2.5 and PM10 were 213.3, 44.1, 23.8, 27.7, 20.2 and 41.5 μg/m3 and; 439.9, 107.1, 55.0, 72.4, 45.5 and 112.0 μg/m3 for Fasina (Iron-Steel Smelting Factory, ISSF), Modomo, Eleweran, Fire Service, O.A.U. staff quarters and Obafemi Awolowo University Teaching and Research Farm (OAUTRF), respectively. PM concentration and wind speed showed a negative exponential distribution curve with the lowest exponential fit coefficient of determination (R2) values of 0.08 for PM2.5 and 0.03 for PM10 during nighttime periods at Eleweran and Fire service sites, respectively. The relationship between PM concentration and temperature gave a decay curve indicating that higher PM concentrations were observed at lower temperatures. The exponential distribution curve for the relationship between PM concentration and relative humidity (RH) showed that PM concentrations do not vary for RH 80 % for both day and nighttime. The performances of the MLR model were slightly poor and as such not too reliable for predicting the concentration but useful for improving predictive model accuracy when other variables contributing to the variability of PM is considered. The study concluded that the anthropogenic and industrial activities at the smelting factory contribute significantly to the elevated PM mass concentration measured at the study locations
Parameter tuning patterns for random graph coloring with quantum annealing.
Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-coloring instances, some of which have been open for almost two decades
A NSFD Discretization of Two-Dimensional Singularly Perturbed Semilinear Convection-Diffusion Problems
Despite the availability of an abundant literature on singularly perturbed problems, interest toward non-linear problems has been limited. In particular, parameter-uniform methods for singularly perturbed semilinear problems are quasi-non-existent. In this article, we study a two-dimensional semilinear singularly perturbed convection-diffusion problems. Our approach requires linearization of the continuous semilinear problem using the quasilinearization technique. We then discretize the resulting linear problems in the framework of non-standard finite difference methods. A rigorous convergence analysis is conducted showing that the proposed method is first-order parameter-uniform convergent. Finally, two test examples are used to validate the theoretical findings.</jats:p
Ethno Botanical Survey of Plants Used For Malaria Treatment in Igboora, Ibarapa Central Local Government of Oyo State, Nigeria
Novel blood-based biomarkers and disease modifying therapies for Alzheimer's disease. Are we ready for the new era?
Recent positive trials for novel disease modifying therapies of anti-amyloid monoclonal antibodies represent a paradigm shift in the prevention and management of Alzheimer’s disease, a relentlessly progressive and debilitating disease of old age. The reported efficacy of these new agents when given early in the disease trajectory is dependent on an early and accurate disease diagnosis, which is currently based on cerebrospinal fluid tests or/and neuro-imaging studies such as positron emission tomography. These confirmatory tests provide in vivo evidence of the pathological signature of Alzheimer’s disease, of increased cerebral amyloid and tau burden and neurodegeneration. The emergence of blood-based biomarkers represents another breakthrough, offering a less invasive and scalable diagnostic tool that could be applied in both primary and specialist care settings, potentially revolutionizing Alzheimer’s disease clinical pathways. However, healthcare systems face challenges in the adoption of these new technologies and therapies due to diagnostic and treatment capacity constraints, as well as financial and infrastructure requirements
Evaluation of the Performance of some Evapotranspiration Models at a Tropical Location in Ile – Ife, Nigeria
This study evaluates the performance of some evapotranspiration models at Ile – Ife (7o 33’ N, 4o 33’ E) Nigeria. This was to identify suitable evapotranspiration (ET) models at the study site and to provide useful information for standardizing evapotranspiration estimations at a tropical location. Meteorological parameters (wind speed, relative humidity, temperature, solar radiation, soil heat flux, and net radiation) were routinely measured at the Obafemi Awolowo University (OAU) Meteorological Station located within the Teaching and Research Farm of the campus for a period of a month (1st – 29th July 2014). Nine standardized models for the estimation of ET; Penman-Monteith (FAO-56 PM), Priestly-Taylor (PT), Makkink (MAKK), Jensen-Haise (JH), Hargreaves-Samani (HS), Ivanov (IVA), Modified Romanenko (MROM), FAO-24 Radiation (FAO-24 RAD) and Turc (TURC) models were employed. The ET values obtained from these models were then compared to the estimated values obtained from the FAO-56 PM equation recommended as the international standard method for determining reference ET. The estimation of the ET obtained from FAO – 56 PM model ranged between 0.426 – 2.239 mm/day, MAKK, JH, and HS gave estimation closest to this, ranging from 0.544 – 2.272 mm/day. The estimation of ET from other models revealed that PT has the highest value ranging between 1.323 – 6.936 mm/day, followed closely was FAO – 24 RAD with values ranging between 1.197 – 6.500 mm/day, values of IVA model ranged from 0.620 – 1.829 mm/day, MROM value ranged from 1.240 – 3.659 mm/day, TURC has the least value ranging from 0.190 – 0.584 mm/day. Using the result of the mean biased error and regression analysis, JH model compared best with the FAO – 56 PM with coefficient of determination (R2) = 0.927; slope (b) = 0.957; mean biased error (MBE) = 0.133, this was followed closely by HS with value R2 = 0.929; b = 1.199; MBE = - 0.075 and MAKK with the value R2 = 0.931; b = 1.198; MBE = - 0.052. However, the other models showed significant over or underestimation of the ET benchmark values. The performance of the other models showed no improvement after they were recalibrated by adjusting their original coefficients. Thus, six out of the ET models employed in this study [the Priestly-Taylor (PT), Makkink (MAKK), Jensen-Haise (JH), Hargreaves-Samani (HS), FAO-24 Radiation (FAO-24 RAD) and Turc (TURC)] were found suitable for the climatic region of Ile – Ife after the adjustment of their coefficients.</jats:p
Recommended from our members
Spatiotemporal distribution of pollutants and impact of local meteorology on source influence on pollutants' level in a traffic air-shed in Lagos megacity, Nigeria.
Pollution from vehicular emissions is a major cause of poor air quality observed in many urban and semi-urban towns and cities. As such, this study was conducted to assess air quality and the spatiotemporal distribution of vehicular and traffic-related pollutants in several air sheds of Lagos megacity, the economic nerve centre of Nigeria. A setup of low-cost air quality sensors comprising five (5) units was deployed between November 2018 and February 2019 within traffic corridors in the heart of the city. Diurnal variation of pollutants indicated that carbon dioxide (CO2) peaked during the early hours of the day, total oxide (Ox = NO2+O3) peaked at mid-day while carbon monoxide (CO) had two distinct peaks which correspond to morning and evening rush hours. Nitrogen dioxide (NO2) concentration peaked during evening hours. Average concentrations are NO2 (97.1 ± 9.7) ppb, Ox (78.6 ± 27.2) ppb, CO2 (450.1 ± 31.2) ppm, and CO (2285.63 ± 743.7) ppb. Average concentrations of pollutants were above thresholds set by the World Health Organization (WHO) except for NO2 which was within the range permissible limits. The implication of this is that the atmosphere is polluted due to elevated concentrations of airborne pollutants, an indication which is of both health and environmental concern. The air quality index (AQI) indicates that the quality of ambient air varies from good to very unhealthy for Ox, and unhealthy to very unhealthy for CO, while AQI for PM2.5 and PM10 showed hazardous at all the sampling locations except at UNILAG where it is unhealthy for the sensitive group. For all of the sampling sites, conditional bivariate probability function (CBPF) plots show a significant agreement with the location of known pollution sources
Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum
In this work, we investigated the veracity of an ion continuity equation in controlling equatorial ionization anomaly (EIA) morphology using total electron content (TEC) of 22 GPS receivers and three ground-based magnetometers (Magnetic Data Acquisition System, MAGDAS) over Africa and the Middle East (Africa-Middle East) during the quietest periods. Apart from further confirmation of the roles of equatorial electrojet (EEJ) and integrated equatorial electrojet (IEEJ) in determining hemispheric extent of EIA crest over higher latitudes, we found some additional roles played by thermospheric meridional neutral wind. Interestingly, the simultaneous observations of EIA crests in both hemispheres of Africa-Middle East showed different morphology compared to that reported over Asia. We also observed interesting latitudinal twin EIA crests domiciled at the low latitudes of the Northern Hemisphere. Our results further showed that weak EEJ strength associated with counter electrojet (CEJ) during sunrise hours could also trigger twin EIA crests over higher latitudes
