8 research outputs found

    Mechanism of fully-reversible, pH-sensitive inhibition of human glutamine synthetase by tyrosine nitration

    No full text
    Glutamine synthetase (GS) catalyzes an ATP-dependent condensation of glutamate and ammonia to form glutamine. This reaction – and therefore GS – are indispensable for the hepatic nitrogen metabolism. Nitration of tyrosine 336 (Y336) inhibits human GS activity. GS nitration and the consequent loss of GS function are associated with a broad range of neurological diseases. The mechanism by which Y336 nitration inhibits GS, however, is not understood. Here, we show by means of unbiased MD simulations, binding and configurational free energy computations that Y336 nitration hampers ATP binding, but only in the deprotonated and negatively-charged state of residue 336. By contrast, for the protonated and neutral state, our computations indicate an increased binding affinity for ATP. pKa computations of nitrated Y336 within GS predict a pKa of ~5.3. Thus, at physiological pH nitrated Y336 exists almost exclusively in the deprotonated and negatively-charged state. In vitro experiments confirm these predictions, in that, the catalytic activity of nitrated GS is decreased at pH 7 and pH 6, but not at pH 4. These results indicate a novel, fully reversible, pH-sensitive mechanism for the regulation of GS activity by tyrosine nitration

    Evidence for functional selectivity in TUDC- and norUDCA-induced signal transduction via α5β1 integrin towards choleresis

    No full text
    Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor and has been described for G protein-coupled receptors. However, it has not yet been described for ligands interacting with integrins without αI domain. Here, we show by molecular dynamics simulations that four side chain-modified derivatives of tauroursodeoxycholic acid (TUDC), an agonist of α5β1 integrin, differentially shift the conformational equilibrium of α5β1 integrin towards the active state, in line with the extent of β1 integrin activation from immunostaining. Unlike TUDC, 24-nor-ursodeoxycholic acid (norUDCA)-induced β1 integrin activation triggered only transient activation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase and, consequently, only transient insertion of the bile acid transporter Bsep into the canalicular membrane, and did not involve activation of epidermal growth factor receptor. These results provide evidence that TUDC and norUDCA exert a functional selectivity at α5β1 integrin and may provide a rationale for differential therapeutic use of UDCA and norUDCA

    Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration

    No full text
    We previously reported that inactivation of the transmembrane taurine transporter (TauT or solute carrier 6a6) causes early retinal degeneration in mice. Compatible with taurine's indispensability for cell volume homeostasis, protein stabilization, cytoprotection, antioxidation, and immuno- and neuromodulation, mice develop multisystemic dysfunctions (hearing loss; liver fibrosis; and behavioral, heart, and skeletal muscle abnormalities) later on. Here, by genetic, cell biologic, in vivo H-1-magnetic resonance spectroscopy and molecular dynamics simulation studies, we conducted in-depth characterization of a novel disorder: human TAUT deficiency. Loss of TAUT function due to a homozygous missense mutation caused panretinal degeneration in 2 brothers. TAUT(p.A78E) still localized in the plasma membrane but is predicted to impact structural stabilization. H-3-taurine uptake by peripheral blood mononuclear cells was reduced by 95%, and taurine levels were severely reduced in plasma, skeletal muscle, and brain. Extraocular dysfunctions were not yet detected, but significantly increased urinary excretion of 8-oxo-7,8-dihydroguanosine indicated generally enhanced (yet clinically unapparent) oxidative stress and RNA oxidation, warranting continuous broad surveillance.-Preising, M. N., Gorg, B., Friedburg, C., Qvartskhava, N., Budde, B. S., Bonus, M., Toliat, M. R., Pfleger, C., Altmuller, J., Herebian, D., Beyer, M., Zollner, H. J., Wittsack, H.-J., Schaper, J., Klee, D., Zechner, U., Nurnberg, P., Schipper, J., Schnitzler, A., Gohlke, H., Lorenz, B., Haussinger, D., Bolz, H. J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration
    corecore