766 research outputs found

    Boiler Out! Program: Where Cultures Cross for Community Services

    Get PDF
    Quynh Nguyen reflects on what she has learned from serving the community, from interactions with international students at Purdue, and how her volunteerism supports her current major in pre-pharmacy. We can do no great things, only small things with great love. ā€”Mother Theres

    Circuit-to-Hamiltonian from tensor networks and fault tolerance

    Full text link
    We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state encodes the quantum computation. All previous maps relied on the Feynman-Kitaev construction, which introduces an ancillary `clock register' to track the computational steps. Our construction, on the other hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction of a clock register. This comes at the cost of the ground state containing only a noisy version of the quantum computation, with independent stochastic noise. We can remedy this - making our construction robust - by using quantum fault tolerance. In addition to the stochastic noise, we show that any state with energy density exponentially small in the circuit depth encodes a noisy version of the quantum computation with adversarial noise. We also show that any `combinatorial state' with energy density polynomially small in depth encodes the quantum computation with adversarial noise. This serves as evidence that any state with energy density polynomially small in depth has a similar property. As an application, we show that contracting injective tensor networks to additive error is BQP-hard. We also discuss the implication of our construction to the quantum PCP conjecture, combining with an observation that QMA verification can be done in logarithmic depth

    Evolutionary tracks for Betelgeuse

    Full text link
    We have constructed a series of non-rotating quasi-hydrostatic evolutionary models for the M2 Iab supergiant Betelgeuse (Ī±Ā Orionis\alpha~Orionis). Our models are constrained by multiple observed values for the temperature, luminosity, surface composition and mass loss for this star, along with the parallax distance and high resolution imagery that determines its radius. We have then applied our best-fit models to analyze the observed variations in surface luminosity and the size of detected surface bright spots as the result of up-flowing convective material from regions of high temperature in the surface convective zone. We also attempt to explain the intermittently observed periodic variability in a simple radial linear adiabatic pulsation model. Based upon the best fit to all observed data, we suggest a best progenitor mass estimate of 20āˆ’3+5MāŠ™ 20 ^{+5}_{-3} M_\odot and a current age from the start of the zero-age main sequence of 8.0āˆ’8.58.0 - 8.5 Myr based upon the observed ejected mass while on the giant branch.Comment: 27 pages, 11 figures, Revised per referee suggestions, Accepted for publication in the Astrophysical Journa

    Circuit-to-Hamiltonian from tensor networks and fault tolerance

    Get PDF
    We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state encodes the quantum computation. All previous maps relied on the Feynman-Kitaev construction, which introduces an ancillary `clock register' to track the computational steps. Our construction, on the other hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction of a clock register. This comes at the cost of the ground state containing only a noisy version of the quantum computation, with independent stochastic noise. We can remedy this - making our construction robust - by using quantum fault tolerance. In addition to the stochastic noise, we show that any state with energy density exponentially small in the circuit depth encodes a noisy version of the quantum computation with adversarial noise. We also show that any `combinatorial state' with energy density polynomially small in depth encodes the quantum computation with adversarial noise. This serves as evidence that any state with energy density polynomially small in depth has a similar property. As an application, we show that contracting injective tensor networks to additive error is BQP-hard. We also discuss the implication of our construction to the quantum PCP conjecture, combining with an observation that QMA verification can be done in logarithmic depth

    Food Insecurity: Rudimentary Education for Local Youth (FIREFLY)

    Get PDF
    As service-learning becomes recognized as a significant teaching-learning tool for college students, the authors of this article came together to apply for the Purdue University Service-Learning Sustainability Projects Grant. Upon receiving the grant, with the encouragement of Professor Jane Krause and Food Finders Food Bank, the student authors created a project focused on food insecurity education in West Lafayette, Indiana. The main objective was to develop and teach a series of lessons on food insecurity and sustainability to middle school students using interactive activities. A team of Purdue students from various backgrounds was recruited to assist in planning and to act as student mentors. They partnered with Mrs. Caren Walker, a family and consumer science teacher at Klondike Middle School, on this project. The team of Purdue students taught the five lessons for her three classes of eighth grade students. The most competitive teams from these classes came to present their posters, made throughout the project, at the Purdue Engagement and Service-Learning Summit on March 1, 2017

    The Use of Coronary CT Angiography for the Evaluation of Chest Pain

    Get PDF
    Coronary computed tomography angiography (CCTA) may improve the diagnosis and management of acute and stable chest pain syndromes. The key for caregivers of patients presenting with acute chest pain is the early identification and management of life-threatening conditions, such as acute coronary syndromes, pulmonary embolism, and acute aortic dissection. The main goal in stable chest pain syndromes is to determine the extent and severity of coronary artery disease. This review article will critically evaluate the current literature supporting the evidence for the clinical use of CCTA in acute and stable chest pain syndromes, considering the latest innovations in CCTA technology and their potential impact on patient care

    Wafer-scale fabrication of 2D nanostructures via thermomechanical nanomolding

    Full text link
    With shrinking dimensions in integrated circuits, sensors, and functional devices, there is a pressing need to develop nanofabrication techniques with simultaneous control of morphology, microstructure, and material composition over wafer length scales. Current techniques are largely unable to meet all these conditions, suffering from poor control of morphology and defect structure or requiring extensive optimization or post-processing to achieve desired nanostructures. Recently, thermomechanical nanomolding (TMNM) has been shown to yield single-crystalline, high aspect ratio nanowires of metals, alloys, and intermetallics over wafer-scale distances. Here, we extend TMNM for wafer-scale fabrication of 2D nanostructures. Using Cu, we successfully nanomold Cu nanoribbons with widths < 50 nm, depths ~ 0.5-1 microns and lengths ~ 7 mm into Si trenches at conditions compatible with back end of line processing. Through SEM cross-section imaging and 4D-STEM grain orientation maps, we show that the grain size of the bulk feedstock is transferred to the nanomolded structures up to and including single crystal Cu. Based on the retained microstructures of molded 2D Cu, we discuss the deformation mechanism during molding for 2D TMNM.Comment: 4 figure

    No time for change? Impact of contextual factors on the effect of training primary care healthcare workers in Kyrgyzstan and Vietnam on how to manageĀ asthma in children - A FRESH AIR implementation study.

    Get PDF
    BACKGROUND: Training is a common and cost-effective way of trying to improve quality of care in low- and middle-income countries but studies of contextual factors for the successful translation of increased knowledge into clinical change are lacking, especially in primary care. The purpose of this study was to assess the impact of contextual factors on the effect of training rural healthcare workers in Kyrgyzstan and Vietnam on their knowledge and clinical performance in managing pediatric patients with respiratory symptoms. METHODS: Primary care health workers in Kyrgyzstan and Vietnam underwent a one-day training session on asthma in children under five. The effect of training was measured on knowledge and clinical performance using a validated questionnaire, and by direct clinical observations. RESULTS: Eighty-one healthcare workers participated in the training. Their knowledge increased by 1.1 Cohen's d (CI: 0.7 to 1.4) in Kyrgyzstan where baseline performance was lower and 1.5 Cohen's d (CI: 0.5 to 2.5) in Vietnam. Consultations were performed by different types of health care workers in Kyrgyzstan and there was a 79.1% (CI 73.9 to 84.3%) increase in consultations where at least one core symptom of respiratory illness was asked. Only medical doctors participated in Vietnam, where the increase was 25.0% (CI 15.1 to 34.9%). Clinical examination improved significantly after training in Kyrgyzstan. In Vietnam, the number of actions performed generally declined. The most pronounced difference in contextual factors was consultation time, which was median 15ā€‰min in Kyrgyzstan and 2ā€‰min in Vietnam. DISCUSSION AND CONCLUSION: The effects on knowledge of training primary care health workers in lower middle-income countries in diagnosis and management of asthma in children under five only translated into changes in clinical performance where consultation time allowed for changes to clinical practice, emphasizing the importance of considering contextual factors in order to succeed in behavioral change after training

    Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo

    Get PDF
    The fungal pathogen Candida albicans is frequently associated with catheter-based infections because of its ability to form resilient biofilms. Prior studies have shown that the transcription factor Bcr1 governs biofilm formation in an in vitro catheter model. However, the mechanistic role of the Bcr1 pathway and its relationship to biofilm formation in vivo are unknown. Our studies of biofilm formation in vitro indicate that the surface protein Als3, a known adhesin, is a key target under Bcr1 control. We show that an als3/als3 mutant is biofilm-defective in vitro, and that ALS3 overexpression rescues the biofilm defect of the bcr1/bcr1 mutant. We extend these findings with an in vivo venous catheter model. The bcr1/bcr1 mutant is unable to populate the catheter surface, though its virulence suggests that it has no growth defect in vivo. ALS3 overexpression rescues the bcr1/bcr1 biofilm defect in vivo, thus arguing that Als3 is a pivotal Bcr1 target in this setting. Surprisingly, the als3/als3 mutant forms a biofilm in vivo, and we suggest that additional Bcr1 targets compensate for the Als3 defect in vivo. Indeed, overexpression of Bcr1 targets ALS1, ECE1, and HWP1 partially restores biofilm formation in a bcr1/bcr1 mutant background in vitro, though these genes are not required for biofilm formation in vitro. Our findings demonstrate that the Bcr1 pathway functions in vivo to promote biofilm formation, and that Als3-mediated adherence is a fundamental property under Bcr1 control. Known adhesins Als1 and Hwp1 also contribute to biofilm formation, as does the novel protein Ece1
    • ā€¦
    corecore