329 research outputs found

    Bifacial dye-sensitized solar cells : a strategy to enhance overall efficiency based on transparent polyaniline electrode

    Get PDF
    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ,24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.The authors acknowledge the financial joint support by the National High Technology Research and Development Program of China (No. 2009AA03Z217), the National Natural Science Foundation of China (nos. 90922028, U1205112, 51002053, 61306077), Seed Fund from Ocean University of China, and Fundamental Research Funds for the Central Universities (201313001)

    Hydrophobic Hydrogel Caged H\u3csub\u3e3\u3c/sub\u3ePO\u3csub\u3e4\u3c/sub\u3e as a New Class of High-Temperature Proton Exchange Membranes with Enhanced Acid Retention

    Get PDF
    We herein report a new class of high-temperature proton exchange membranes comprised of poly(acrylic acid-graft-hexadecyltrimethylammonium bromide) (PAA-g-CTAB) or poly(acrylic acid)-graft-poly(ethylene glycol) (PAA-g-PEG) hydrophobic hydrogel caged H3PO4. The membranes exhibit reasonable proton conductivity, enhanced H3PO4 retention ability and low solubility in water, making them promising as potential high performance and robust electrolytes for high-temperature proton exchange membrane fuel cells. Although the proton conductivity is still lower than that of H3PO4 doped PBI membranes, the new concept provides a different approach to proton exchange membranes for acid retention

    H\u3csub\u3e3\u3c/sub\u3ePO\u3csub\u3e4\u3c/sub\u3e-Imbibed Three-Dimensional Polyacrylamide/Polyacrylamide Hydrogel as a High-Temperature Proton Exchange Membrane with Excellent Acid Retention

    Get PDF
    We herein report the use of polyacrylamide/polyacrylamide interpenetrating polymer network (PAM/PAM IPN) hydrogel as a matrix to imbibe proton conducting H3PO4, forming a robust proton exchange membrane (PEM) suitable for high-temperature PEM fuel cells by combining excellent acid retention, simple synthesis, and low cost. Its extraordinary ability to absorb large quantity of aqueous solution is fully utilized to achieve high H3PO4 loading, showing a proton conductivity of 0.0833 S cm−1 at 183 °C in dry air. The synthesized membrane also shows excellent acid retention even under mechanical load and high humidity. These profound advantages along with simple and low-cost synthesis promise the new membrane to be a strong candidate as a high-temperature PEM

    Enhanced Methanol Oxidation and CO Tolerance Using CeO\u3csub\u3e2\u3c/sub\u3e-Added Eggshell Membrane-Templated Pd Network Electrocatalyst

    Get PDF
    Macroporous Pd and CeO2-added Pd network catalysts have been synthesized using eggshell membrane (ESM) as a template for enhanced methanol oxidation and CO tolerance. The microstructural characterization revealed a hierarchically ordered macroporous network of Pd reproducing the fibrous structure of ESM for a Pd-only catalyst, and a flower-like CeO2-decorated Pd morphological architecture for the CeO2-added Pd catalyst synthesized by a precipitation method. XRD patterns indicated Pd and CeO2 phases with good crystallinity. The cyclic voltammetry studies showed an enhanced electrocatalytic activity for methanol oxidation in acidic aqueous medium. Because of the preferential formation of Ce–CO bonds over Pd–CO bonds, the incorporation of CeO2 into Pd-based catalysts results in an increased CO tolerance, making it a robust catalyst for methanol oxidation in direct methanol fuel cells

    Privacy-Preserving Quick Authentication in Fast Roaming Networks

    Full text link
    Vehicular networks will become an important component for information accesses in one’s daily life. A vehicular net-work provides a vehicular user not only chances to communi-cate with peer vehicles but also to use Internet through road-side access points (APs). During a trip a vehicular user could roam across multiple APs either belong to their home wireless domain or to domains owned by different authorities. This poses challenges on privacy and network performance to the current public wireless network access protocols. In this pa-per we explore an idea that shifts the paradigm of authen-tication that goes back to home networks to a paradigm of authentication that performs at the APs. We propose three authentication schemes in realizing the idea. These schemes are designed for preserving user’s identity and location pri-vacy. They also greatly reduce response time for authentica-tion when roaming. The paper then analyzes the security and privacy properties of these schemes as well as the efficiency of them.

    Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation

    Get PDF
    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-0/IL-113 from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk over¬comes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radia¬tion (1–6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-10, -6, -10, and -27 or TNF-a and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Impor¬tantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-0/IL-10 and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would other¬wise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. J. Leukoc. Biol. 100: 000–000; 2016

    Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration

    Get PDF
    Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish

    The Main Progress of Perovskite Solar Cells in 2020–2021

    Get PDF
    Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided

    All-Weather Solar Cells: A Rising Photovoltaic Revolution

    Full text link
    corecore