8 research outputs found
[pt] PRODUÇÃO E CARACTERIZAÇÃO DE DISPOSITIVOS ORGÂNICOS ELETROLUMINESCENTES (OLEDS) BASEADOS EM COMPLEXOS (BETA)-DICETONATOS DE TERRAS-RARAS
Este trabalho apresenta os resultados de um estudo que envolve a
fabricação e a caracterização de dispositivos orgânicos emissores de luz
(OLEDs) baseados em complexos β-dicetonatos de terras-raras. O estudo se
coloca como continuação lógica da linha de pesquisa em dispositivos
eletroluminescentes baseados em íons terras-raras, começada alguns anos
atrás neste grupo de pesquisa. Para a produção dos dispositivos foram
empregadas várias técnicas de deposição de filmes finos, tais como deposição
térmica resistiva, pulverização catódica assistida por plasma (rf-magnetronsputtering)
e spin-coating. A síntese dos compostos orgânicos, bem como alguns
estudos adicionais puderam ser realizadas através de colaborações com
diversos grupos de pesquisas nacionais, os quais dispõem de recursos e
capacitação em áreas complementares. Os complexos orgânicos estudados
foram divididos em três conjuntos, que chamamos de sistemas. No sistema 1,
estudou-se o complexo Eu(bmdm)3(ttpo)2, onde o ligante orgânico bmdm é um
conhecido agente absorvedor de radiação UV bastante usado em protetores
solares. Os OLEDs baseados neste complexo apresentaram intensa foto- e
eletroluminescência com alta pureza de cor dada apenas pelas finas transições
características do íon Eu3+. No sistema 2, estudou-se o complexo chamado de
binuclear. Este composto tem dois núcleos terras-raras coordenados numa
mesma molécula. O primeiro binuclear estudado, o complexo
Eu(btfa)3 phenterpy Tb(acac)3, não apresentou as transições características dos
íons Tb3+ e Eu3+ como era esperado inicialmente. Por outro lado, apresentou
uma eletroluminescência sintonizável em duas situações distintas, a primeira em
função da tensão aplicada e a segunda através de mudanças na arquitetura das
camadas constituintes. Por causa desse efeito, mostramos a possibilidade de se
construir um dispositivo OLED emissor de luz branca. Ainda nesse sistema,
foram estudados OLEDs com complexos modificados quimicamente, chamados
de binuclear 2 e trinuclear. O complexo binuclear 2 apresentou as linhas de
emissão dos íons Tb3+ e Eu3+. Apesar de menos eficiente que o primeiro
complexo binuclear, este estudo mostrou que através de manipulações
moleculares (nanotecnologia) é possível sintetizar compostos capazes de emitir
as linhas características de emissão dos íons terras-raras, ou seja, com um
único complexo é possível obter duas emissões distintas. Por último, ainda como
sistema 2, o complexo trinuclear, é uma mistura de compostos orgânicos
contendo Tm, Tb e Eu e não formam uma única molécula, como no caso dos
compostos binucleares. Este estudo foi iniciado recentemente e ainda não foi
completamente explorado. Os primeiros testes mostraram que é possível usar
este complexo também para fabricar OLEDs com emissão de cor branca,
variando-se as quantidades relativas de Tm, Tb e Eu da mistura. Sabendo-se
que os ligantes β-dicetonas são os responsáveis pela transferência de energia
para os íons TR3+, através do efeito antena, o sistema 3, despontou como
grande novidade, mostrando a construção de dispositivos eletroluminescentes
baseados em complexos tetrakis(β-dicetonatos) de TR, ou seja, compostos que
possuem quatro ligantes β-dicetonas coordenandos a um único íon TR. Com
esse sistema conseguimos pela primeira vez uma emissão eficiente e pura das
principais transições do íon Tb à temperatura ambiente. O trabalho apontou,
também, que tanto a irradiação com luz UV, quanto a exposição aos agentes
atmosféricos (oxigênio, água, umidade, etc.) contribuem para uma rápida
degradação dos complexos orgânicos com conseqüente decaimento do
desempenho dos dispositivos fabricados. Para tanto, iniciamos um estudo para
investigar as causas da degradação de alguns dos compostos orgânicos
utilizados na fabricação de OLEDs. Os estudos de fotoabsorção e fotoemissão
realizados no Laboratório Nacional de Luz Síncrotron foram fundamentais para
uma maior compreeIn this work we present the results of a study that
involves the manufacture
and the characterization of organic eletroluminescent
devices (OLEDs) based on
(beta)-diketonates Rare-Earth complexes. The investigation
reported is a continuation
of the research in electroluminescent devices based on
rare-earth ions, started
some years ago in our Group. For the production of the
devices were applied
several thin films deposition techniques: thermal
resistive, rf-magnetronsputtering
and spin-coating. The synthesis of organic compounds, as
well some
additional studies, were carried on through the
collaboration with different
brazilian research groups, which have resources and
qualification in
complementary areas. The organic compounds studied in this
thesis have been
divided in three groups, named systems. In system 1, the
studied complex was
Eu(bmdm)3(ttpo)2, where the organic bmdm ligand is a known
UV sensitive
material, frequently used in sunblockers. The OLEDs based
on this complex
presented intense photo- and electroluminescence with high
pure color emission
due to the almost atomic transitions characteristic of the
Eu3+ ion. In system 2, a
binuclear complex, represented by the molecular formula
Eu(btfa)3 phenterpy Tb(acac)3 was studied. This complex
has two rare-earth
nuclei coordinated in the same molecule. The OLEDs based
on this complex did
not present the Tb3+ and Eu3+ characteristic transitions
as expected. On the other
hand, the complex gave us the possibility to develop an
OLED with white color
emission. Probably the major novelty of this thesis is
represented by system 3.
Indeed, knowing that the (beta)-diketone ligands are the
main responsible for the RE3+
ions energy transference through the antenna effect, in
system 3, we investigated
the possibility to fabricate electroluminescent devices
based on RE (beta)-diketonate
tetrakis complexes, which have four coordinated (beta)-
diketones ligand to an RE ion
in order to enchance the energy transfer and the emission
efficiency. With this
system we obtained, for the first time, an efficient and
pure Tb emission at room
temperature
Transparent thermally stable poly (etherimide) film as flexible substrate for OLEDs
5 p. : il.In this work, ITO thin films were deposited onto poly(etherimide) (PEI) substrates at room temperature
using r.f. magnetron sputtering and successively they were annealed in the 423–523 K (150–250 °C)
temperature range. PEI/ITO substrates were structurally, optically and electrically characterized in order to
verify the quality of the deposited ITO films and the PEI thermal stability during the ITO annealing process. A
transmittance of about 80% was measured in the visible range. The best electrical properties achieved were:
3.04×10−4 Ω cm, 12.07×1021cm2/V.s, 16.8 × 1021 cm−3, for resistivity, carrier concentration and mobility,
respectively. Small molecule Flexible Organic Light Emitting Diodes (FOLED) were then fabricated and
characterized onto ITO functionalized PEI substrates. These preliminary results show clearly that PEI can be
successfully used as substrate in flexible optoelectronic devices either operating in high temperature or
when the process needs high temperatures
Study of Punctual Defects in Monolayer WS<sub>2</sub>: Evidence of Correlations Between Raman and Photoluminescence Spectroscopy
The investigation of defects in transition-metal
dichalcogenides
(TMDs) are of capital interest for future applications because they
strongly change the optical, electronic, or vibrational properties
of such materials. In this sense, spectroscopic techniques, such as
Raman and photoluminescence, are powerful tools to investigate the
optoelectronic properties of crystal defects in two-dimensional TMDs.
In this work, we observed that defect-activated Raman modes and bound
exciton emissions can be strongly correlated. Specifically, we investigated
the impact that sulfur vacancies, produced by focused helium ion beam,
have on the electronic and phononic properties of WS2 grown
by chemical vapor deposition. The photoluminescence spectra show two
new emission peaks related to defects in the crystal structure. The
defective nature of these bands were corroborated by density functional
theory calculations, which showed new electronic states in the band
gap associated with sulfur vacancies. Furthermore, by monitoring the
evolution of the Raman spectra as a function of the defect concentration,
we observed two new defect activated modes. These bands are explained
by a second-order double resonant Raman process, similar to the D
band of graphene. Finally, we found out that the defect-related Raman
peaks become fully resonant for high defect concentrations. It turns
out that degenerate electronic states split in two separated levels
for high defect concentrations that are involved in the resonance
of the Raman processes
Origin of optical bandgap fluctuations in graphene oxide
In this work, we explore the electrical, optical and spectroscopic properties of different Graphene Oxide (GO) samples focusing on new oxidative strategies to tune their physicochemical properties. Three types of GO samples were prepared by changing the oxidative conditions resulting in carbonyl-, epoxy- or hydroxyl-rich GO. These materials were characterized by UV-VIS absorption, Raman spectroscopy and X-ray diffraction. The experimental results indicate that all samples exhibit oxidation and exfoliation degrees typical of graphene oxides obtained by using the modified Hummers’ method. The optical bandgap values were measured using the Tauc’s plot from UV-VIS data and showed that the stoichiometry of GO impacts the width of the bandgap. The carbonyl-rich sample presented the lowest gap around 3.20 ± 0.02 eV, while epoxy- and hydroxyl-rich GOs showed out gaps of about 3.48 ± 0.07 and 3.72 ± 0.05 eV, respectively. These experimental results are consistent with theoretical calculations of bandgaps obtained with coronene and circumcoronene GO models. The calculations were obtained using different theoretical approaches, such as: Huckel, PM3, AM1 and DFT. The present work suggests that a precise tuning of the optical bandgap of GOs can be achieved by only changing their stoichiometry thus allowing their use in a large range of electronic applications
Biodiesel compatibility with carbon steel and hdpe parts
8 p.: il., tab.Compatibility of the new environmentally-friendly alternative of diesel engine fuels, biodiesel, with storage
and engine part materials, is still an open issue. In this work, the interaction between three fuels (petroleum
diesel and two types of biodiesel — soybean and sunflower) and two materials (carbon steel and high density
polyethylene) used in storage and automotive tanks, is analyzed in detail. A wide set of characterization
techniques was used to evaluate the changes in both solid and fluid materials, as weight change
measurement, optical, scanning electron and atomic force (AFM) microscopies, Raman and FTIR spectroscopies,
and differential scanning calorimetry. The AFM technique allowed detecting surface roughness and
morphology changes in the metallic material following the trends in the weight losses. In the case of
polymeric material, weight gain by fluid absorption occurred, being detected by the spectroscopic
techniques. The biodiesel fuels underwent some ageing however this phenomenon did not affect the
interaction between the biodiesel fuels and the substrates. The petrodiesel, which did not age, caused more
significant degradation of the substrates