2,119 research outputs found

    The Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard Model

    Full text link
    We compute the upper bound on the mass of the lightest Higgs boson in the Minimal Supersymmetric Standard Model in a model-independent way, including leading (one-loop) and next-to-leading order (two-loop) radiative corrections. We find that (contrary to some recent claims) the two-loop corrections are negative with respect to the one-loop result and relatively small (\simlt 3\%). After defining physical (pole) top quark mass MtM_t, by including QCD self-energies, and physical Higgs mass MHM_H, by including the electroweak self-energies Π(MH2)Π(0)\Pi\left(M_H^2\right)-\Pi(0), we obtain the upper limit on MHM_H as a function of supersymmetric parameters. We include as supersymmetric parameters the scale of supersymmetry breaking MSM_S, the value of tanβ\tan \beta and the mixing between stops Xt=At+μcotβX_t= A_t + \mu \cot\beta (which is responsible for the threshold correction on the Higgs quartic coupling). Our results do not depend on further details of the supersymmetric model. In particular, for MS1M_S\leq 1 TeV, maximal threshold effect Xt2=6MS2X_t^2=6M_S^2 and any value of tanβ\tan\beta, we find MH140M_H\leq 140 GeV for Mt190M_t\leq 190 GeV. In the particular scenario where the top is in its infrared fixed point we find MH86M_H\leq 86 GeV for Mt=170M_t = 170 GeV.Comment: 24 pages + 15 figures in one compressed uuencoded tarred postscript file (The figures can be obtained by e-mail from [email protected]; also, the whole postscript file of the text including the figures can be obtained by ANONYMOUS FTP from ROCA.CSIC.ES (161.111.20.20) at the directory HEP the file being HIGGS.PS: just type GET HEP/HIGGS.PS), Latex, CERN-TH.7334/9

    Split extended supersymmetry from intersecting branes

    Full text link
    We study string realizations of split extended supersymmetry, recently proposed in hep-ph/0507192. Supersymmetry is broken by small (ϵ\epsilon ) deformations of intersection angles of DD-branes giving tree-level masses of order m02ϵMs2m_0^2\sim \epsilon M_s^2, where MsM_s is the string scale, to localized scalars. We show through an explicit one-loop string amplitude computation that gauginos acquire hierarchically smaller Dirac masses m1/2Dm02/Msm_{1/2}^D \sim m_0^2/M_s. We also evaluate the one-loop Higgsino mass, μ\mu, and show that, in the absence of tree-level contributions, it behaves as μm04/Ms3\mu\sim m_0^4/M_s^3. Finally we discuss an alternative suppression of scales using large extra dimensions. The latter is illustrated, for the case where the gauge bosons appear in N=4 representations, by an explicit string model with Standard Model gauge group, three generations of quarks and leptons and gauge coupling unification.Comment: 32 pages, 3 figure

    Infinite impulse response modal filtering in visible adaptive optics

    Full text link
    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors

    The Higgs as a Portal to Plasmon-like Unparticle Excitations

    Get PDF
    A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry breaking, an infrared divergent vacuum expectation value for O_U. Such IR divergence should be tamed before any phenomenological implications of the Higgs-unparticle interplay can be drawn. In this paper we present a novel mechanism to cure that IR divergence through (scale-invariant) unparticle self-interactions, which has properties qualitatively different from the mechanism considered previously. Besides finding a mass gap in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon resonance. Such unparticle features could be explored experimentally through their mixing with the Higgs boson.Comment: 12 LaTeX pages, 2 figure

    Sobre los Mandamientos

    Get PDF
    corecore