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Abstract

A renormalizable coupling between the Higgs and a scalar unparticle operator OU

of non-integer dimension dU < 2 triggers, after electroweak symmetry breaking, an

infrared divergent vacuum expectation value for OU . Such IR divergence should be

tamed before any phenomenological implications of the Higgs-unparticle interplay can

be drawn. In this paper we present a novel mechanism to cure that IR divergence

through (scale-invariant) unparticle self-interactions, which has properties qualita-

tively different from the mechanism considered previously. Besides finding a mass gap

in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon

resonance. Such unparticle features could be explored experimentally through their

mixing with the Higgs boson.
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1 Introduction

The very active field of unparticles grew out of two seminal papers [1] in which Georgi

entertained the possibility of coupling a scale-invariant sector (with a non-trivial infrared

fixed point) to our familiar standard model of particles. He described several very un-

conventional features of that sector that could be probed through such couplings. In his

original proposal, Georgi considered only couplings through non-renormalizable operators

(after integrating out some heavy messenger sector that interacts directly both with the

Standard Model and the unparticle sector). Later on Shirman et al. [2] considered the

possibility of coupling directly a scalar operator of unparticles OU (of scaling dimension

dU , with 1 < dU < 2) to the SM Higgs field through a renormalizable coupling of OU to

|H|2. As pointed out in [3] such coupling induces a tadpole for OU after the breaking of

the electroweak symmetry and for dU < 2 the value of the vacuum expectation value 〈OU 〉
has an infrared (IR) divergence. That divergence should be cured before any phenomeno-

logical implications of the Higgs-unparticle coupling can be studied in a consistent way.

Ref. [3] discussed a simple way of inducing an IR cutoff that would make 〈OU 〉 finite. One

of the main implications of such mechanism was the appearance of a mass gap, mg, of

electroweak size for the unparticle sector. Needless to say, such mass gap has dramatic

implications both for phenomenology and for constraints on the unparticle sector.

In addition, Ref. [3] showed that, after electroweak symmetry breaking (EWSB), the

Higgs state mixes with the unparticle continuum in a way reminiscent of the Fano-

Anderson model [4], familiar in solid-state and atomic physics as a description of the

mixing between a localized state and a quasi-continuum. When the Higgs mass is below

mg, the Higgs survives as an isolated state but with some unparticle admixture that will

modify its properties. On the other hand, the unparticle continuum above mg gets a Higgs

contamination that can make it more accessible experimentally. When the Higgs mass is

above mg the Higgs state gets subsumed into the unparticle continuum with the Higgs

width greatly enlarged by the unparticle mixing. Such behaviour is similar to that found

when the Higgs mixes with a quasi-continuum of graviscalars [5]. In both cases, with mh

above or below mg, the properties of the mixed Higgs-unparticle system can be described

quite neatly through a spectral function analysis.

The organization of the paper is as follows: after describing the previous IR problem

(Section 2) we present an alternative stabilization mechanism for 〈OU 〉 (Section 3). This

mechanism has significant differences with respect to that used in Ref. [3]: although it also

induces an unparticle mass gap1 it involves a scale-invariant self-coupling of unparticles

only and leads to the appearance of a peculiar resonance in the unparticle continuum that

is reminiscent of a plasmon excitation (Section 4). The mixing between the unparticle

states and the Higgs boson after EWSB gives a handle on the structure of the unparticle

continuum. This is best seen in terms of an spectral function analysis which we develop

in Section 5. We present our conclusions in Section 6.

1One expects such mass gap as a generic feature of any mechanism that solves the IR problem.
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2 The Infrared Problem

We start with the following scalar potential

V0 = m2|H|2 + λ|H|4 + κU |H|2OU , (2.1)

where the first two terms are the usual SM Higgs potential and the last term is the Higgs-

unparticle coupling, with κU having mass dimension 2−dU . As usual, the quartic coupling

λ would be related in the SM to the Higgs mass at tree level by m2

h0
= 2λv2. We write

the Higgs real direction as Re(H0) = (h0 + v)/
√

2, with v = 246 GeV.

The unparticle operator OU has dimension dU , spin zero and its propagator is [1, 6]

PU (p2) =
AdU

2 sin(πdU )

i

(−p2 − iǫ)2−dU

, AdU
≡ 16π5/2

(2π)2dU

Γ(dU + 1/2)

Γ(dU − 1)Γ(2dU )
. (2.2)

When the Higgs field gets a non zero vacuum expectation value (VEV) the scale

invariance of the unparticle sector is broken [2]. From (2.1) we see that in such non-

zero Higgs background the physical Higgs field mixes with the unparticle operator OU

and also a tadpole appears for OU itself which will therefore develop a non-zero VEV.

As done in Ref. [3], it is very convenient to use a deconstructed version of the unparticle

sector as proposed in [7]. One considers an infinite tower of scalars ϕn (n = 1, ...,∞) with

masses squared M2
n = ∆2n. The mass parameter ∆ is small and eventually taken to zero,

limit in which one recovers a (scale-invariant) continuous mass spectrum. As explained

in [7], the deconstructed form of the operator OU is

O ≡
∑

n

Fnϕn , (2.3)

where Fn is chosen as

F 2

n =
AdU

2π
∆2(M2

n)dU−2 , (2.4)

so that the two-point correlator of O matches that of OU in the ∆ → 0 limit. In the

deconstructed theory the unparticle scalar potential, including the coupling (2.1) to the

Higgs field, reads

δV =
1

2

∑

n

M2

nϕ2

n + κU |H|2
∑

n

Fnϕn . (2.5)

A non-zero VEV, 〈|H|2〉 = v2/2, triggers a VEV for the fields ϕn:

vn ≡ 〈ϕn〉 = −κUv2

2M2
n

Fn , (2.6)

thus implying, in the continuum limit,

〈OU 〉 = −κUv2

2

∫

∞

0

F 2(M2)

M2
dM2 , (2.7)
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where

F 2(M2) =
AdU

2π
(M2)dU−2 , (2.8)

is the continuum version of (2.4). We see that 〈OU 〉 has an IR divergence for dU < 2, due

to the fact that for M → 0 the tadpole diverges while the mass itself, that should stabilize

the unparticle VEV, goes to zero.

In Ref. [3] it was shown how one can easily get an IR regulator in (2.8) by including a

coupling

δV = ζ|H|2
∑

n

ϕ2

n , (2.9)

in the deconstructed theory. This coupling respects the conformal symmetry but will

break it when H takes a VEV. Now one gets

〈OU 〉 = −κUv2

2

∫

∞

0

F 2(M2)

M2 + ζv2
dM2 , (2.10)

which is obviously finite for 1 < dU < 2 and reads explicitly

〈OU 〉 = −1

2
κU

AdU

2π
ζdU−2v2dU−2Γ(dU − 1)Γ(2 − dU ) . (2.11)

Implications for EWSB of such coupling (2.9) were studied in Ref. [3].

3 An Alternative Solution to the IR Problem

It is natural to attempt to solve the IR problem of the previous section by introducing

a quartic coupling term for the deconstructed scalar fields ϕn so that the VEVs vn are

under control. As pointed out already in Ref. [3] the naive try with δV = λU
∑

n ϕ4
n fails.

Here we prove that the particular combination

δV =
1

4
ξ

(

∞
∑

n=1

ϕ2

n

)2

, (3.1)

is successful in providing a finite value for 〈OU 〉. Before showing that explicitly, let us first

show that the coupling (3.1) has a finite and scale-invariant continuum limit.

We can take as scale transformations for the deconstructed fields ϕn

ϕn(x) → aϕn(xa) , (3.2)

while leaving the space-time coordinates unscaled (x → x). It is straightforward to show

that under such scale transformation the kinetic part of the (deconstructed) action is

invariant while the mass terms are not, as usual. In the continuum limit, however, taking

∆ · u(M2, x) as the continuum limit of ϕn(x), and using the scale transformation

u(M2, x) → u(M2/a2, xa) , (3.3)
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the continuum action

S =

∫

d4x

∫

∞

0

dM2

[

1

2
∂µu(M2, x)∂µu(M2, x) − M2u2(M2, x)

]

, (3.4)

is indeed scale invariant. Using the same construction, it is then straightforward to see

that the continuum limit of the quartic coupling (3.1) is well defined and scale invariant,

being explicitly given by:

δS = −
∫

d4x

∫

∞

0

dM2

1

∫

∞

0

dM2

2

1

4
ξ u2(M2

1 , x)u2(M2

2 , x) . (3.5)

To keep the following analysis general, we consider both couplings ζ and ξ simultane-

ously, writing for the deconstructed part of the scalar potential:

δV =
1

2

∑

n

M2

nϕ2

n + κU |H|2
∑

n

Fnϕn + ζ|H|2
∑

n

ϕ2

n +
1

4
ξ

(

∞
∑

n=1

ϕ2

n

)2

. (3.6)

The minimization equation for the Higgs field is not affected by the new coupling ξ, while

that for vn ≡ 〈ϕn〉 can be put in the form

vn =
−1

2
κUv2Fn

M2
n + ζv2 + ξ

∑

∞

m=1 v2
m

. (3.7)

Squaring the above equation and summing in n from 1 to ∞ one gets an implicit equation

for

σ2 ≡
∞
∑

n=1

v2

n . (3.8)

In the continuum limit, and using

(µ2

U )2−dU ≡ κ2

U

AdU

2π
, (3.9)

the equation for σ2 reads

σ2 =
1

4
(µ2

U )2−dU v4

∫

∞

0

dM2
(M2)dU−2

(M2 + ζv2 + ξσ2)2
. (3.10)

or, performing the integral explicitly,

σ2 =
1

4
Γ(dU − 1)Γ(3 − dU )(µ2

U )2−dU v4(ζv2 + ξσ2)dU−3 , (3.11)

which can be solved for σ2 (numerically if ζ 6= 0 or analytically if ζ = 0).

The induced mass gap in the unparticle continuum is now

m2

g = ζv2 + ξσ2 , (3.12)

and it is clear that this mass gap will cutoff the IR divergence of OU even for ζ = 0,

solving therefore the infrared problem. Note that σ 6= 0 only if v 6= 0 so that the mass

gap is in any case associated with EWSB.
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4 Unparticle Plasmon Excitation

We begin by writing down explicitly the infinite mass matrix that mixes the (real) neutral

component h0 of the Higgs with the deconstructed tower of unparticle scalars, ϕn. The

different matrix elements are:

M2

hh = 2λv2 ≡ m2

h0 , (4.1)

M2

hn = κUvFn
M2

n + ξσ2

M2
n + m2

g

≡ An , (4.2)

M2

nm = (M2

n + m2

g)δnm +
1

2
κ2

Uξv4
FnFm

(M2
n + m2

g)(M
2
m + m2

g)

≡ (M2

n + m2

g)δnm + anam . (4.3)

It is a simple matter to obtain the hh-entry of the inverse (infinite matrix) propagator

associated to this infinite mass matrix. Already taking its continuum limit we obtain:

iPhh(p2)−1 = p2 − m2

h0 + J2(p
2) − 1

2
ξv2

[J1(p
2)]2

1 + 1

2
ξv2J0(p2)

, (4.4)

where we have used the integrals

Jk(p
2) ≡

∫

∞

0

GU (M2, p2)(M2 + ξσ2)kdM2

=
v2

p4

(

µ2

U

m2
g

)2−dU

Γ(dU − 1)Γ(2 − dU )







(

1 − p2

m2
g

)dU−2

(p2 − m2

g + ξσ2)k

−
[

1 + (2 − dU )
p2

m2
g

]

(ξσ2 − m2

g)
k − k p2(ξσ2 − m2

g)
k−1

}

, (4.5)

with integer k and where GU (M2, p2) is:

GU (M2, p2) ≡ v2(µ2

U/M2)2−dU

(M2 + m2
g − p2)(M2 + m2

g)
2

. (4.6)

These integrals are real for p2 < m2
g but they develop an imaginary part for p2 > m2

g. This

imaginary part will be important later on when we discuss the spectral function associated

to Phh(p2). The final expression for the inverse propagator with all the integrals explicitly

performed is lengthy and not very illuminating. Although the integrals in (4.4) diverge

for p2 → m2
g, the combination entering (4.4) is finite.

In contrast with the scenario analyzed in Ref. [3], in which the (real part of the) Higgs-

unparticle propagator had a pole associated with a Higgs (with non-standard couplings),

the propagator (4.4) has an additional pole associated with the unparticle continuum. In

order to understand the origin of this additional pole consider the unparticle submatrix
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(4.3). It has a simple form (a diagonal part plus a rank-1 correction) that allows one to

find a particularly interesting eigenvalue ω2
p0 (and eigenvector {rn}) that satisfy

1 +
∑

n

a2
n

M2
n + m2

g − ω2
p0

= 0 , (4.7)

and

rn =
an

Np(ω
2
p0

− M2
n − m2

g)
, (4.8)

where Np is a normalization constant that ensures
∑

∞

n=1 r2
n = 1. For sufficiently large

values of the an’s Eq. (4.7) has a solution, with ω2
p0 > m2

g necessarily. Note that this pole

can exist due to the presence of the new quartic coupling ξ and only after EWSB, which

gives an 6= 0. The appearance of this state out of the unparticle continuum is reminiscent of

the appearance of plasmon excitations in condensed matter physics. In fact, the structure

of the unparticle submatrix is similar to the Hamiltonian that describes the residual long-

range Coulomb interactions induced in a plasma by a probe electromagnetic wave. Such

structure lies at the root of different collective phenomena in different fields of physics [8].

The previous discussion can be carried over to the continuum limit, in which the

condition (4.7) takes the form

1 +
1

2
ξv2 P.V.

[
∫

∞

0

GU (M2, ω2

p0)dM2

]

= 1 +
1

2
ξv2 P.V.[J0(ω

2

p0)] = 0 , (4.9)

and will be modified only quantitatively by the mixing of unparticles with the Higgs in the

full matrix (4.1)-(4.3). In general we will expect two poles, one Higgs-like at m2

h coming

from the unmixed m2

h0
, and one plasmon-like at ω2

p coming from the unmixed ω2
p0

, both

of them somewhat displaced by the mixing.

5 Spectral Function Analysis

In order to study in more detail this interplay between the Higgs and the unparticle sector

it is instructive to examine the spectral representation of the mixed propagator (4.4),

which is given by

ρhh(s) = − 1

π
Im[Phh(s + iǫ)] , (5.1)

where the limit ǫ → 0 is understood. We can easily calculate this spectral function by

using 1/(x + iǫ) → P.V.[1/x] − iπδ(x) directly in the integrals Jk of (4.5) to obtain, for

s > m2
g,

Jk(s + iǫ) = Rk(s) + iIk(s) , (5.2)
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with

Rk(s) =
v2

s2

(

µ2

U

m2
g

)2−dU

Γ(dU − 1)Γ(2 − dU )







(

s

m2
g

− 1

)dU−2

(s − m2

g + ξσ2)k cos(dUπ)

−
[

1 + (2 − dU )
s

m2
g

]

(ξσ2 − m2

g)
k − k s (ξσ2 − m2

g)
k−1

}

,

Ik(s) = π
v2

s2
(s + ξσ2 − m2

g)
k

(

µ2

U

s − m2
g

)2−dU

. (5.3)

As in the case of Ref. [3] there are two qualitatively different cases, depending on

whether the Higgs mass mh is larger or smaller than mg. For mh < mg, the spectral

function is explicitly given by

ρhh(s) =
1

K2(m2

h)
δ(s − m2

h) + θ(s − m2

g)
TU (s)

D2(s) + π2T 2

U (s)
, (5.4)

where D(s) and TU (s) are the real and imaginary parts of iPhh(s + iǫ)−1 when s > m2
g:

iPhh(s + iǫ)−1 = D(s) + i TU (s) . (5.5)

More explicitly, one finds

D(s) = s − m2

h0 + R2(s) (5.6)

− 1

2N(s)
ξv2

{[

1 +
1

2
ξv2R0(s)

]

[

R1(s)
2 − I1(s)

2
]

+ ξv2I0(s)R1(s)I1(s)

}

,

TU (s) =
v2

s2N(s)
(s − ξσ2 − m2

g)
2

(

µ2

U

s − m2
g

)2−dU

, (5.7)

with

N(s) ≡
[

1 +
1

2
ξv2R0(s)

]2

+

[

1

2
ξv2I0(s)

]2

. (5.8)

Finally

K2(s0) ≡
d

ds
D(s)

∣

∣

∣

∣

s=s0

. (5.9)

An explicit expression for K2(s0) can be obtained directly from D(s) above, but we do

not reproduce it here.

One can check that the spectral function (5.4) is properly normalized:

∫

∞

0

ρhh(s)ds = 1 . (5.10)
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Figure 1: Spectral function with a Higgs below mg, obtained for the case ζ = 0.4, ξ = 0.1, m2 = 0,

κU = v2−dU and dU = 1.2. The percentage of Higgs composition of the isolated pole and of the

unparticle continuum is given in parenthesis.

The physical interpretation of this spectral function is the standard one: Let us call

|h〉 the Higgs interaction eigenstate and |u,M〉 the unparticle interaction eigenstates (a

continuous function of M) and |H〉, |U,M〉 the respective mass eigenstates after EWSB.

Then one has

|〈H|h〉|2 =
1

K2(m2

h)
,

|〈U,M |h〉|2 =
TU (M2)

D2(M2) + π2T 2

U (M2)
, (5.11)

so that ρhh describes in fact the Higgs composition of the isolated pole and the unpar-

ticle continuum. The proper normalization (5.10) is simply a consequence of the proper

normalization of |h〉, i.e. |〈h|h〉|2 = 1. From the simple form of TU (s) in (5.7) we can

see directly that for M2
0 = m2

g + ξσ2 the spectral function is zero, corresponding to an

unparticle state |U,M0〉 which has 〈h|U,M0〉 = 0. The amount of |h〉 admixture in any

state is important because it will determine key properties of that state, like its coupling

to gauge bosons, that are crucial for its production and decay.
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Figure 2: Spectral function with plasmon and Higgs above mg, obtained for the case ζ = 0.3,

ξ = 0.2, m2 = −1.5(100 GeV)2, κU = v2−dU and dU = 1.1. The percentage of Higgs composition

of each resonance is given in parenthesis.

Fig. 1 shows the spectral function for a case with mh < mg. The parameters have been

chosen as follows: dU = 1.2, κU = v2−dU , m2 = 0, ζ = 0.4 and ξ = 0.1. We see a Dirac delta

at m2

h = (152 GeV)2, a mass gap for the unparticle continuum at m2
g = (163 GeV)2, and a

zero at M2
0 = (171 GeV)2. There is also a plasmon-like resonance at ω2

p = (176 GeV)2 but

it is not very conspicuous in this particular case. In parenthesis we give the percentage of

Higgs composition in the isolated resonance and in the continuum: it is simply given by

the integral of ρhh(s) in the corresponding region. We see that the Higgs has lost some of

its original Higgs composition due to mixing with the unparticles (as in the usual singlet

dilution) while the unparticle continuum gets the lost Higgs composition spread above mg

(in a continuum way reminiscent of the models considered in [9]).

The plasmon-like resonance can be seen much more clearly in other cases, like the

one shown in Fig. 2, which has mh > mg. It corresponds to dU = 1.1, κU = v2−dU ,

m2 = −1.5(100 GeV )2, ζ = 0.3 and ξ = 0.2 and has a mass gap at m2
g = (164 GeV)2, a

Higgs resonance at m2

h = (307 GeV)2 and a plasmon-like spike at ω2
p = (198 GeV)2. There

is also a zero at M2
0 = (188 GeV)2 right below the plasmon resonance, but it cannot be

10



discerned in the plot due to the scale of the figure. We give again in parenthesis the Higgs

composition of the Higgs and plasmon resonances. For mh > mg, the spectral function

is given by the second part of (5.4) only, without a Dirac delta-function, and there is no

separate |H〉 state.

The shape of the continuum around the resonances at sr = {m2

h, ω2
p} can be obtained

directly from the spectral density (5.4) by writing

D(s) ≃ (s − sr)K
2(sr) , (5.12)

where K2(sr) is defined in Eq. (5.9). In this case, with sr > m2
g, one should be careful about

using the principal value definition of the integrals entering D(s) to properly calculate

its derivative at sr. Substituting (5.12) in the spectral function (5.4), we see that the

resonances have a Breit-Wigner shape of width Γr given by

Γr√
sr

=
πTU (sr)

srK2(sr)
. (5.13)

6 Conclusions

An unparticle sector could be explored experimentally in a very interesting way if it is

coupled to the Standard Model directly through the Higgs |H|2 operator. In this paper

we have revisited such couplings of the Higgs to an unparticle scalar operator OU of

non-integer dimension dU . We have expanded upon our previous work [3] by considering

a new way of solving the infrared problem that affects the expectation value of OU for

dU < 2 [3] that is generated by EWSB. We have shown how a scale-invariant unparticle

self-coupling 2 can in fact generate a mass gap mg for unparticles that acts as an IR cutoff

to give a finite 〈OU 〉.
In addition to solving the IR problem, the new coupling can induce after EWSB a

new resonance in the unparticle continuum through a mechanism quite similar to those

giving rising to plasmon resonances in condensed matter systems [8]. The mass mixing

of unparticles with the Higgs after EWSB results in a spectrum of states with some

admixture of Higgs that will dictate some of their production and decay properties. One

can distinguish two generic types of spectra. In the first, there is an isolated state below

the mass gap, which one would typically identify with the Higgs boson although it will

carry some unparticle admixture that will change its properties with respect to a SM Higgs

(e.g. the coupling to gauge bosons will be reduced). Beyond the mass gap there will be

an unparticle continuum (possibly with a large plasmon resonance) that will be accessible

experimentally through its Higgs admixture.

In the second type of spectrum, the Higgs mass will be above the mass gap and the

Higgs resonance will in fact merge with the unparticle continuum acquiring a significant

width. In addition to this resonance a large plasmon resonance can also be present. Both

2The importance of unparticle self-interactions for phenomenology has been emphasized in [10].
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resonances will have some Higgs admixture so that both could show up experimentally as

Higgses with non-standard properties.
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