961 research outputs found

    Epithelial cell–derived secreted and transmembrane 1a signals to activated neutrophils during pneumococcal pneumonia

    Full text link
    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-kB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia

    Estimating the environmental impact of dairy cattle breeding programs through emission intensity.

    Get PDF
    A recently developed methodological approach for determining the greenhouse gas emissions impact of national breeding programs was applied to measure the effects of current and future breeding goals on the emission intensity (EI) of the Canadian dairy industry. Emission intensity is the ratio of greenhouse gas outputted in comparison to the product generated. Traits under investigation affected EI by either decreasing the direct emissions yield (i.e. increasing feed performance), changing herd structure (i.e. prolonging herd life) or through the dilution effect of increased production (i.e. increasing fat yield). The intensity value (IV) of each trait, defined as the change in emissions' intensity per unit change in each trait, was calculated for each of the investigated traits. The IV trend of these traits was compared for the current and prospective selection index, as well as for a system with and without quota (the supply management policy designed to prevent overproduction). The overall EI of the average genetic merit Canadian dairy herd per breeding female was 5.07 kg CO2eq/kg protein equivalent output. The annual reduction in EI due to the improvement of production traits was -0.027, -0.018 and -0.006 for fat, protein and milk other solids, respectively. The functional traits, herd life and mastitis resistance, had more modest effects (-0.008 and -0.001, respectively). These results are consistent with international studies that identified traits related to production, survival, health and fertility as having the largest impact on the environmental footprint of dairy cattle. Overall, the dairy industry is becoming more efficient by reducing its EI through selection of environmentally favorable traits, with a 1% annual reduction of EI in Canada

    Long-Term PIT and T-Bar Anchor Tag Retention Rates in Adult Muskellunge

    Get PDF
    Mark-recapture studies require knowledge of tag retention rates specific to tag types, fish species and size, and study duration. We determined the probability of tag loss for passive integrated transponder (PIT) tags implanted into dorsal musculature, T-bar anchor tags attached to dorsal pterygiophores, and loss of both tags in relation to years post-tagging for double-marked adult muskellunge Esox masquinongy over a 10 year period. We also used PIT tags as a benchmark to assess the interactive effects of fish length at tagging, sex, and years post-tagging on T-bar anchor tag loss rates. Only five instances of PIT tag loss were identified; the calculated probability of a fish losing its PIT tag was consistently \u3c 1.0% for up to 10 years post-tagging. The probability of T-bar anchor tag loss by muskellunge was related to the number of years post-tagging and total length of fish at tagging. T-bar anchor tag loss rate one year after tagging was 6.5%. Individuals \u3c 750 mm total length at tagging had anchor tag loss rates \u3c 10% for up to 6 years after tagging. However, the proportion of fish losing T-bar anchor tags steadily increased with increasing years post-tagging (~30% after 6 years) for larger muskellunge. Fish gender did not influence probability of T-bar anchor tag loss. Our results indicate that T-bar anchor tags are best suited for short-term applications (≤ 1 year duration) involving adult muskellunge. We recommend use of PIT tags for longer-term tagging studies, particularly for muskellunge \u3e 750 mm total length
    • …
    corecore